Three-Dimensional Spectral Domain Optical Coherence Tomography

  • Surabhi Ruia
  • Sandeep SaxenaEmail author


Optical coherence tomography (OCT) is an ever evolving technology that has revolutionized ophthalmic imaging. With the advent of spectral domain technology, an unparalleled micrometer axial resolution of 5–10 μm is achieved. With more data acquisition per scanning session, volumetric analysis and three-dimensional imaging are realized (Puliafito et al. 1995; Regatieri et al. 2012; Yannuzzi et al. 2004). Three-dimensional OCT generates OCT fundus images that enable precise registration of OCT images with the image of fundus on standard ophthalmoscopic examination techniques. This allows effortless localization of images for monitoring disease progression and response to therapy. Preservation of retinal topography enables visualization of subtle changes associated with the disease. With rapid evolution in technology, clinical usage of OCT has extended to diseases with more complex morphological features. Improved cellular level resolution has extended the application of spectral domain OCT to retinal degenerations and dystrophies. Three-dimensional imaging, with its increased potential in elucidating retinal morphology, provides a global perspective to various retinal diseases.


Optical Coherence Tomography Retinal Pigment Epithelium Retinal Nerve Fiber Layer Macular Hole Diabetic Macular Edema 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

324343_1_En_2_MOESM1_ESM.wmv (630 kb)
Video 2.1 (WMV 629 kb)
324343_1_En_2_MOESM2_ESM.wmv (606 kb)
Video 2.2 (WMV 606 kb)
Video 2.3

(AVI 30000 kb)

324343_1_En_2_MOESM4_ESM.wmv (638 kb)
Video 2.4 (WMV 637 kb)
324343_1_En_2_MOESM5_ESM.wmv (661 kb)
Video 2.5 (WMV 661 kb)
324343_1_En_2_MOESM6_ESM.wmv (653 kb)
Video 2.6 (WMV 653 kb)
Video 2.7

(WMV 1606 kb)


  1. Abe S, Yamamoto T, Kashiwagi Y et al (2013) Three-dimensional imaging of the inner limiting membrane folding on the vitreomacular interface in diabetic macular edema. Jpn J Ophthalmol 57:553–562CrossRefPubMedGoogle Scholar
  2. Ahlers C, Geitzenauer W, Simader C et al (2008) New perspectives in diagnostics: high resolution optical coherence tomography for age related macular degeneration. Ophthalmologe 105:248–254CrossRefPubMedGoogle Scholar
  3. Albert C, Bernd K, Sascha F (2011) Retinal pigment epithelium tears secondary to age-related macular degeneration—a simultaneous confocal scanning laser ophthalmoscopy and spectral-domain optical coherence tomography study. Arch Ophthalmol 129:575–579CrossRefGoogle Scholar
  4. Altaweel M, Ip M (2003) Macular hole: improved understanding of pathogenesis, staging, and management based on optical coherence tomography. Semin Ophthalmol 18:58–66CrossRefPubMedGoogle Scholar
  5. Apushkin MA, Fishman GA, Janowicz MJ (2005) Correlation of optical coherence tomography findings with visual acuity and macular lesions in patients with X-linked retinoschisis. Ophthalmology 112:495–501CrossRefPubMedGoogle Scholar
  6. Arevalo JF, Fernandez CF, Garcia RA (2005) Optical coherence tomography characteristics of choroidal metastasis. Ophthalmology 112:1612–1619CrossRefPubMedGoogle Scholar
  7. Arevalo JF, Lasave AF, Arias JD et al (2013) Clinical applications of optical coherence tomography in the posterior pole: the 2011 José Manuel Espino Lecture – Part II. Clin Ophthalmol 7:2181–2206CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bodaghi B, Le Hoang P (2000) Ocular tuberculosis. Curr Opin Ophthalmol 11:443–448CrossRefPubMedGoogle Scholar
  9. Bonyadi MH (2013) Early and late spectral domain optical coherence tomography features of acute welding maculopathy. J Ophthalmic Vis Res 8:391–392Google Scholar
  10. Bonyadi MH, Soheilian R, Soheilian M et al (2011) Spectral-domain optical coherence tomography features of mild and severe acute solar retinopathy. Ophthalmic Surg Lasers Imaging 42:e84–e86PubMedGoogle Scholar
  11. Cellini M, Gattegna R, Toschi PG et al (2011) Multifocal electroretinogram and optical coherence tomography spectral-domain in arc welding macular injury: a case report. BMC Ophthalmol 11:40CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chang LK, Sarraf D (2007) Tears of the retinal pigment epithelium: an old problem in a new era. Retina 27:523–534CrossRefPubMedGoogle Scholar
  13. Chan CK, Meyer CH, Gross JG et al (2007) Retinal pigment epithelial tears after intravitreal bevacizumab injection for neovascular age related macular degeneration. Retina 27:541–555CrossRefPubMedGoogle Scholar
  14. Chang LK, Fine HF, Spaide RF et al (2008) Ultrastructural correlation of spectral-domain optical coherence tomographic findings in vitreomacular traction syndrome. Am J Ophthalmol 146:121–127CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chan CK, Abraham P, Meyer CH et al (2010) Optical coherence tomography-measured pigment epithelial detachment height as a predictor for retinal pigment epithelial tears associated with intravitreal bevacizumab injections. Retina 30:203–211CrossRefPubMedGoogle Scholar
  16. Chiang A, Chang LK, Sarraf D et al (2008) Predictors of anti-VEGF associated retinal pigment epithelial tear using FA and OCT analysis. Retina 28:1265–1269CrossRefPubMedGoogle Scholar
  17. Condon GP, Brownstein S, Wang NS (1986) Congenital hereditary (juvenile X-linked) retinoschisis: histopathologic and ultrastructural findings in three eyes. Arch Ophthalmol 104:576–583CrossRefPubMedGoogle Scholar
  18. Curcio CA, Medeiros NE, Millican CL (1996) Photoreceptor loss in age-related macular degeneration. Invest Ophthalmol Vis Sci 37:1236–1249PubMedGoogle Scholar
  19. Duker JS, Kaiser PK, Binder S et al (2013) The International vitreomacular traction study group classification of vitreomacular adhesion, traction and macular hole. Ophthalmology 120:2611–2619CrossRefPubMedGoogle Scholar
  20. Elbendary AM (2010) Three dimensional characterization of epiretinal membrane using spectral domain optical coherence tomography. Saudi J Ophthalmol 24:37–43CrossRefPubMedPubMedCentralGoogle Scholar
  21. Eliassi-Rad B, Albert DM, Green WR (1996) Frequency of ocular metastases in patients dying of cancer in eye bank populations. Br J Ophthalmol 80:125–128CrossRefPubMedPubMedCentralGoogle Scholar
  22. Eriksson U, Larsson E, Holmstrom G (2004) Optical coherence tomography in the diagnosis of juvenile X linked retinoschisis. Acta Ophthalmol Scand 82:218–223CrossRefPubMedGoogle Scholar
  23. Ferry AP, Font RL (1974) Carcinoma metastatic to the eye and orbit: a clinicopathologic study of 227 cases. Arch Ophthalmol 92:276–286CrossRefPubMedGoogle Scholar
  24. Fujimoto H, Gomi F, Wakabayashi T et al (2008) Morphologic changes in acute central serous chorioretinopathy evaluated by Fourier-domain optical coherence tomography. Ophthalmology 115:1494–1500CrossRefPubMedGoogle Scholar
  25. Gallemore RP, Jumper JM, McCuen BW et al (2000) Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 20:115–120CrossRefPubMedGoogle Scholar
  26. Garg S, Mets MB, Bearelly S et al (2009) Imaging of congenital toxoplasmosis macular scars with optical coherence tomography. Retina 29:631–637CrossRefPubMedGoogle Scholar
  27. Gass JD (1984) Pathogenesis of the tears of the RPE. Br J Ophthalmol 68:513–519CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gass JD (1997) Stereoscopic atlas of macular diseases: diagnosis and treatment. Mosby, St. Louis MissouriGoogle Scholar
  29. Gerth C, Zawadzki RJ, Werner JS et al (2008) Retinal morphological changes of patients with X-linked retinoschisis evaluated by Fourier-domain optical coherence tomography. Arch Ophthalmol 126:807–811CrossRefPubMedPubMedCentralGoogle Scholar
  30. Greenberg PB, Martidis A, Rogers AH et al (2002) Intravitreal triamcinolone acetonide for macular oedema due to central retinal vein occlusion. Br J Ophthalmol 86:247–248CrossRefPubMedPubMedCentralGoogle Scholar
  31. Greene JM, Shakin EP (2004) Optical coherence tomography findings in foveal schisis. Arch Ophthalmol 122:1066–1067CrossRefPubMedGoogle Scholar
  32. Gupta V, Shoughy SS, Mahajan S et al (2015) Clinics of ocular tuberculosis. Ocul Immunol Inflamm 23:14–24CrossRefPubMedGoogle Scholar
  33. Guyer DR, Yannuzzi LA, Slakter JS et al (1994) Digital indocyanine green videoangiography of central serous chorioretinopathy. Arch Ophthalmol 112:1057–1062CrossRefPubMedGoogle Scholar
  34. Hangai M, Ojima Y, Gotoh N et al (2007) Three-dimensional imaging of macular holes with high-speed optical coherence tomography. Ophthalmology 114:763–773CrossRefPubMedGoogle Scholar
  35. Haouchine B, Massin P, Tadayoni R et al (2004) Diagnosis of macular pseudoholes and lamellar macular holes by optical coherence tomography. Am J Ophthalmol 138:732–739CrossRefPubMedGoogle Scholar
  36. Hee MR, Baumal CR, Puliafito CA et al (1996) Optical coherence tomography of age-related macular degeneration and choroidal neovascularization. Ophthalmology 103:1260–1270CrossRefPubMedGoogle Scholar
  37. Hikichi T, Yoshida A, Trempe CL (1995) Course of vitreomacular traction syndrome. Am J Ophthalmol 119:55–61CrossRefPubMedGoogle Scholar
  38. Hussain N, Baskar A, Ram LM et al (2006) Optical coherence tomographic pattern of fluorescein angiographic leakage site in acute central serous chorioretinopathy. Clin Experiment Ophthalmol 34:137–140CrossRefPubMedGoogle Scholar
  39. Inoue M, Watanabe Y, Arakawa A et al (2009) Spectral-domain optical coherence tomography images of inner/outer segment junctions and macular hole surgery outcomes. Graefes Arch Clin Exp Ophthalmol 247:325–330CrossRefPubMedGoogle Scholar
  40. Ito Y, Terasaki H, Mori M et al (2000) Three-dimensional optical coherence tomography of vitreomacular traction syndrome before and after vitrectomy. Retina 20:403–405CrossRefPubMedGoogle Scholar
  41. Kamppeter B, Jonas JB (2003) Central serous chorioretinopathy imaged by optical coherence tomography. Arch Ophthalmol 121:742–743CrossRefPubMedGoogle Scholar
  42. Karatas M, Ramirez JA, Ophir A (2005) Diabetic vitreopapillary traction and macular oedema. Eye 19:676–682CrossRefPubMedGoogle Scholar
  43. Khanifar AA, Koreishi AF, Izatt JA et al (2008) Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Ophthalmology 115:1883–1890CrossRefPubMedPubMedCentralGoogle Scholar
  44. Koerner F, Garweg J (1999) Vitrectomy for macular pucker and vitreomacular traction syndrome. Doc Ophthalmol 97:449–458CrossRefPubMedGoogle Scholar
  45. Koizumi H, Spaide RF, Fisher YL et al (2008) Three dimensional evaluation of vitreomacular traction and epiretinal membrane using spectral domain optical coherence tomography. Am J Ophthalmol 145:509–517CrossRefPubMedGoogle Scholar
  46. Kroll P, Wiegand W, Schmidt J (1999) Vitreopapillary traction in proliferative diabetic vitreoretinopathy. Br J Ophthalmol 83:261–264CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lafaut BA, Aisenbrey S, VandenBroecke C et al (2001) Clinicopathological correlation of retinal pigment epithelial tears in exudative age related macular degeneration: pretear, tear, and scarred tear. Br J Ophthalmol 85:454–460CrossRefPubMedPubMedCentralGoogle Scholar
  48. Legarreta JE, Gregori G, Knighton RW et al (2008) Three-dimensional spectral-domain optical coherence tomography images of the retina in the presence of epiretinal membranes. Am J Ophthalmol 145:1023–1030CrossRefPubMedGoogle Scholar
  49. Leitritz M, Gelisken F, Inhoffen W et al (2008) Can the risk of retinal pigment epithelium tears after bevacizumab treatment be predicted? An optical coherence tomography study. Eye 22:1504–1507CrossRefPubMedGoogle Scholar
  50. Lida T, Hagimura N, Sato T et al (2000) Evaluation of central serous chorioretinopathy with optical coherence tomography. Am J Ophthalmol 129:16–20CrossRefGoogle Scholar
  51. Mitarai K, Gomi F, Tano Y (2006) Three-dimensional optical coherence tomographic findings in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol 244:1415–1420CrossRefPubMedGoogle Scholar
  52. Monnet D, Averous K, Delair E et al (2009) Optical coherence tomography in ocular toxoplasmosis. Int J Med Sci 6:137–138CrossRefPubMedPubMedCentralGoogle Scholar
  53. Montero JA, Ruiz-Moreno JM (2005) Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy. Br J Ophthalmol 89:562–564CrossRefPubMedPubMedCentralGoogle Scholar
  54. Mori K, Gehlbach PL, Sano A et al (2004) Comparison of epiretinal membranes of differing pathogenesis using optical coherence tomography. Retina 24:57–62CrossRefPubMedGoogle Scholar
  55. Ojima Y, Hangai M, Sasahara M et al (2007) Three-dimensional imaging of the foveal photoreceptor layer in central serous chorioretinopathy using high-speed optical coherence tomography. Ophthalmology 114:2197–2207CrossRefPubMedGoogle Scholar
  56. Ophir A, Martinez MR (2011) Epiretinal membranes and incomplete posterior vitreous detachment in diabetic macular edema, detected by spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 52:6414–6420CrossRefPubMedGoogle Scholar
  57. Orefice JL, Costa RA, Orefice F et al (2007) Vitreoretinal morphology in active ocular toxoplasmosis: a prospective study by optical coherence tomography. Br J Ophthalmol 91:773–780CrossRefPubMedGoogle Scholar
  58. Perez-Alvarez MJ, Arriola-Villalobos P, Reche-Frutos J et al (2009) Choroidal metastasis from a breast carcinoma. Diagnosis and follow-up with optical coherence tomography and fluorescein angiography and autofluorescence with HRA-II (Heidelberg Retina Angiograph). Arch Soc Esp Oftalmol 84:267–270CrossRefPubMedGoogle Scholar
  59. Piccolino FC, Borgia L (1994) Central serous chorioretinopathy and indocyanine green angiography. Retina 14:231–242CrossRefPubMedGoogle Scholar
  60. Piccolino FC, Longrais RR, Ravera G et al (2005) The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. Am J Ophthalmol 139:87–99CrossRefPubMedGoogle Scholar
  61. Podoleanu AG, Jackson DA (1998) Combined optical coherence tomograph and scanning laser ophthalmoscope. Electron Lett 34:1088–1090CrossRefGoogle Scholar
  62. Podoleanu AG, Seeger M, Dobre GM et al (1998) Transversal and longitudinal images from the retina of the living eye using low coherence reflectometry. J Biomed Opt 3:12–20CrossRefPubMedGoogle Scholar
  63. Power WJ, Travers SP, Mooney DJ (1991) Welding arc maculopathy and fluphenazine. Br J Ophthalmol 75:433–435CrossRefPubMedPubMedCentralGoogle Scholar
  64. Prenner JL, Capone A Jr, Ciaccia S et al (2006) Congenital X-linked retinoschisis classification system. Retina 26:S61–S64CrossRefPubMedGoogle Scholar
  65. Puliafito CA, Hee MR, Lin CP et al (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229CrossRefPubMedGoogle Scholar
  66. Punjabi OS, Flynn HW Jr, Knighton RW et al (2008) Spectral domain optical coherence tomography for proliferative diabetic retinopathy with subhyaloid hemorrhage. Ophthalmic Surg Lasers Imaging 39:494–496CrossRefPubMedGoogle Scholar
  67. Querques G, Leveziel N, Benhamou N et al (2006) Analysis of retinal flecks in fundus flavimaculatus using optical coherence tomography. Br J Ophthalmol 90:1157–1162CrossRefPubMedPubMedCentralGoogle Scholar
  68. Querques G, Prato R, Coscas G et al (2009) In vivo visualization of photoreceptor layer and lipofuscin accumulation in Stargardt’s disease and fundus flavimaculatus by high resolution spectral-domain optical coherence tomography. Clin Ophthalmol 3:693–699CrossRefPubMedPubMedCentralGoogle Scholar
  69. Querques G, Avellis FO, Querques L et al (2011) Three dimensional spectral domain optical coherence tomography features of retinal-choroidal anastomosis. Graefes Arch Clin Exp Ophthalmol 250:165–173CrossRefPubMedGoogle Scholar
  70. Regatieri CV, Branchini L, Fujimoto JG et al (2012) Choroidal imaging using spectral-domain optical coherence tomography. Retina 32:865–876CrossRefPubMedPubMedCentralGoogle Scholar
  71. Salman A, Parmar P, Rajamohan M et al (2006) Optical coherence tomography in choroidal tuberculosis. Am J Ophthalmol 142:170–172CrossRefPubMedGoogle Scholar
  72. Saxena S, Kumar D (2000) Macular involvement in Eales disease. Ann Ophthalmol 32:98–100CrossRefGoogle Scholar
  73. Saxena S, Meredith TA (2006) Optical coherence tomography. In: Saxnea S, Meredith TA (eds) Optical coherence tomography in retinal diseases, 1st edn. McGraw-Hill publishers, New YorkGoogle Scholar
  74. Saxena S, Rastogi RAK, Vishvkarma K et al (2010) Spectral-domain optical coherence tomography in healed ocular toxoplasmosis. J Ocul Biol Dis Inform 3:109–111CrossRefGoogle Scholar
  75. Saxena S, Sinha N, Sharma S (2011) Three-dimensional imaging by spectral domain optical coherence tomography in central serous chorioretinopathy with fibrin. J Ocul Biol Dis Inform 4:149–153CrossRefGoogle Scholar
  76. Saxena S, Jain A, Akduman L (2012) Vitreopapillary and vitreomacular traction in proliferative Eales’ disease. BMJ Case Rep. doi: 10.1136/bcr-2012-007231
  77. Saxena S, Jain A, Akduman L (2012b) Three-dimensional spectral domain optical coherence tomography of retina in choroidal metastasis due to breast and lung carcinoma. J Ocul Biol Dis Infor 5:9–12CrossRefPubMedPubMedCentralGoogle Scholar
  78. Saxena S, Jain A, Sharma SR, Meyer CH (2012c) Three-dimensional spectral domain optical coherence tomography of retina in choroidal metastasis due to uterine endometrial carcinoma. BMJ Case Rep 11:2012Google Scholar
  79. Saxena S, Mishra N, Meyer CH (2012d) 3D spectral domain OCT in spontaneous retinal pigment epithelial tear. J Ocul Biol Dis Infor 5:70–76CrossRefPubMedGoogle Scholar
  80. Saxena S, Mishra N, Meyer CH (2012e) Three-dimensional spectral domain optical coherence tomography in Stargardt disease and fundus flavimaculatus. J Ocul Biol Dis Infor 5:13–18CrossRefPubMedPubMedCentralGoogle Scholar
  81. Saxena S, Manisha, Meyer CH (2013a) Three-dimensional spectral domain optical coherence tomography in X linked foveal retinoschisis. BMJ Case Rep. doi: 10.1136/bcr-2012-007661
  82. Saxena S, Mishra N, Meyer CH et al (2013b) Ischaemia-reperfusion injury in central retinal artery occlusion. BMJ Case Rep. doi: 10.1136/bcr-2013-201415
  83. Saxena S, Singhal V, Akduman L (2013c) Three-dimensional spectral domain optical coherence tomography imaging of the retina in choroidal tuberculoma. BMJ Case Rep. doi: 10.1136/bcr-2012-008156
  84. Saxena S, Mishra N, Meyer CH (2014) Three-dimensional spectral domain optical coherence tomography in chronic exposure to welding arc. BMJ Case RepGoogle Scholar
  85. Scheider A, Nasemann JE, Lund OE (1993) Fluorescein and indocyanine green angiographies of central serous choroidopathy by scanning laser ophthalmoscopy. Am J Ophthalmol 115:50–56CrossRefPubMedGoogle Scholar
  86. Schmidt D, Kube T, Feltgen N (2006) Central retinal artery occlusion: findings in optical coherence tomography and functional correlations. Eur J Med Res 11:250–252PubMedGoogle Scholar
  87. Shiraki K, Kohno T, Ataka S et al (2001) Thinning and small holes at an impending tear of a retinal pigment epithelial detachment. Graefes Arch Clin Exp Ophthalmol 239:430–436CrossRefPubMedGoogle Scholar
  88. Spaide RF (2005) Central serous chorioretinopathy. In: Holz FG, Spaide RF (eds) Medical retina essentials in ophthalmology. Springer, New YorkGoogle Scholar
  89. Spaide RF, Lee JK, Klancnik JK Jr et al (2003) Optical coherence tomography of branch retinal vein occlusion. Retina 23:343–347CrossRefPubMedGoogle Scholar
  90. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500CrossRefPubMedGoogle Scholar
  91. Srinivasan VJ, Wojtkowski M, Witkin AJ et al (2006a) High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 113:2054–2065CrossRefPubMedPubMedCentralGoogle Scholar
  92. Srinivasan VJ, Ko TH, Wojtkowski M et al (2006b) Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 47:5522–5528CrossRefPubMedPubMedCentralGoogle Scholar
  93. Tilanus MA, Cuypers MH, Bemelmans NA et al (1999) Predictive value of pattern VEP, pattern ERG and hole size in macular hole surgery. Graefes Arch Clin Exp Ophthalmol 237:629–635CrossRefPubMedGoogle Scholar
  94. Ullrich S, Haritoglou C, Gass C et al (2002) Macular hole size as a prognostic factor in macular hole surgery. Br J Ophthalmol 86:390–393CrossRefPubMedPubMedCentralGoogle Scholar
  95. Verdina T, Tsang SH, Greenstein VC et al (2012) Functional analysis of retinal flecks in stargardt disease. J Clin Exp Ophthalmol 3:6CrossRefGoogle Scholar
  96. Voigt M, Querques G, Atmani K et al (2010) Analysis of retinal flecks in fundus flavimaculatus using high-definition spectral-domain optical coherence tomography. Am J Ophthalmol 150:330CrossRefPubMedGoogle Scholar
  97. Wang MY, Nguyen D, Hindoyan N et al (2009) Vitreo-papillary adhesion in macular hole and macular pucker. Retina 29:644–650CrossRefPubMedGoogle Scholar
  98. Wang GH, Zhang J, Zhang D et al (2011) Value of three dimensional optical coherence tomography and fundus photochromy in correlating the fluorescein leaking sites of acute central serous chorioretinopathy. Med Princ Pract 20:283–286CrossRefPubMedGoogle Scholar
  99. Wilkins JR, Puliafito CA, Hee MR et al (1996) Characterization of epiretinal membranes using optical coherence tomography. Ophthalmology 103:2142–2151CrossRefPubMedGoogle Scholar
  100. Witkin AJ, Ko TH, Fujimoto JG et al (2006) Redefining lamellar holes and the vitreomacular interface: an ultrahigh-resolution optical coherence tomography study. Ophthalmology 113:388–397CrossRefPubMedPubMedCentralGoogle Scholar
  101. Wojtkowski M, Srinivasan V, Fujimoto JG et al (2005) Three-dimensional retinal imaging with highspeed ultrahigh-resolution optical coherence tomography. Ophthalmology 112:1734–1746CrossRefPubMedPubMedCentralGoogle Scholar
  102. Wong JG, Sachdev N, Beaumont PE et al (2005) Visual outcomes following vitrectomy and peeling of epiretinal membrane. Clin Experiment Ophthalmol 33:373–378CrossRefPubMedGoogle Scholar
  103. Yamada N, Kishi S (2005) Tomographic features and surgical outcomes of vitreomacular traction syndrome. Am J Ophthalmol 139:112–117CrossRefPubMedGoogle Scholar
  104. Yamaike N, Tsujikawa A, Ota M et al (2008) Three dimensional imaging of cystoid macular edema in retinal vein occlusion. Ophthalmology 115:355–362CrossRefPubMedGoogle Scholar
  105. Yannuzzi LA, Ober MD, Slakter JS et al (2004) Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol 137:511–524CrossRefPubMedGoogle Scholar
  106. Yanoff M, Fine BS (1989) Ocular pathology. A text and atlas. Mosby, St. Louis MissouriGoogle Scholar
  107. Yi K, Mujat M, Park BH et al (2009) Spectral domain optical coherence tomography for quantitative evaluation of drusen and associated structural changes in non-neovascular age-related macular degeneration. Br J Ophthalmol 93:176–181CrossRefPubMedGoogle Scholar

Copyright information

© Springer India 2017

Authors and Affiliations

  1. 1.Department of OphthalmologyKing George’s Medical UniversityLucknowIndia

Personalised recommendations