Advertisement

Image-Guided Neurosurgery at Brigham and Women’s Hospital

  • Shin Nakajima
  • Ron Kikinis
  • Peter McL. Black
  • Hideki Atsumi
  • Michael E. Leventon
  • Nobuhiko Hata
  • David C. Metcalf
  • Thomas M. Moriarty
  • Eben AlexanderIII
  • Ferenc A. Jolesz

Summary

We have been conducting various forms of image-guided neurosurgery for several years. Our image-guided therapy program includes surgical planning, intraoperative guidance using preoperative images, and intraoperative guidance using real-time magnetic resonance (MR) images. In the Surgical Planning Laboratory, we produce three-dimensional (3-D) images by reconstructing image data from computed tomograms (CT), MR imaging, and MR angiograms (MRA). These images are transferred through a network to SUN workstations in the Surgical Planning Laboratory. Registration between each modality is performed using the maximization of mutual information method. After the segmentation of each anatomical structure, such as brain, tumor, ventricles, or vessels, a 3-D model is constructed and displayed using surface rendering. We can rotate, translate, change color, and make translucent each structure on the computer display. Presurgically, this 3-D model is used to evaluate the surgical risks, choose the best method of intervention, and select the most appropriate surgical approach. In the operating room, either the video registration method or a frameless stereotaxic system is used for navigation. The 3-D model is superimposed onto the surgical field using a video mixer for the video registration system. The surgical navigator displays the tip of the probe on the 3-D model and original MR images for frameless stereotaxy. The other image-guided neurosurgery project involves the open-configuration intraoperative MR imaging system. This system produces MR scans of the patient during various types of neurosurgical procedures. Two surgeons can obtain access to the patient through a 56-cm space in the 0.5-tesla superconducting magnet. They can look at frequently updated MR images during surgery. So far this system has been used for frameless stereotaxic brain biopsies, for tumor or arteriovenous malformation (AVM) resection, and for various shunting or cyst-draining procedures.

Key words

3-D reconstruction Computer-assisted neurosurgery Image-guided surgery (IGS) Intraoperative magnetic resonance image (MRI) Surgical navigator 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shelden CH, McCann G, Jacques S, et al (1980) Development of a computerized microstereotaxic method for localization and removal of minute CNS lesions under direct 3-D vision. Technical report. J Neurosurg 52: 21–27PubMedCrossRefGoogle Scholar
  2. 2.
    Kelly PJ (1986) Computer-assisted stereotaxis: new approaches for management of intracranial intra-axial tumors. Neurology 36: 535–541PubMedCrossRefGoogle Scholar
  3. 3.
    Roberts DW, Strohbehn JW, Hatch J, et al (1986) A frameless stereotaxic integration of computerized tomographic imaging and the operating microscope. J Neurosurg 65: 545–549PubMedCrossRefGoogle Scholar
  4. 4.
    Hsiang JNK, Liang EY, Lam JMK, et al (1996) The role of computed tomographic angiography in the diagnosis of intracranial aneurysms and emergent aneurysm clipping. Neurosurgery 38: 481–488PubMedGoogle Scholar
  5. 5.
    Gibson S, Samosky J, Mor A, et al (1997) Simulating arthroscopic knee surgery using volumetric object representations, real-time volume rendering, and haptic feedback. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. Springer, Berlin Heidelberg New York, pp 369–378Google Scholar
  6. 6.
    Watanabe E, Watanabe T, Manaka S, et al (1987) Three-dimensional digitizer (neuro-navigator): new equipment of CT-guided stereotaxic surgery. Surg Neurol 27: 543–547PubMedCrossRefGoogle Scholar
  7. 7.
    Watanabe E, Mayanagi Y, Kosugi Y, et al (1991) Open surgery assisted by the neuro-navigator, a stereotactic, articulated, sensitive arm. Neurosurgery 28: 792–800PubMedCrossRefGoogle Scholar
  8. 8.
    Kato A, Yoshimine T, Hayakawa T, et al (1991) A frameless, armless navigational system for computer-assisted neurosurgery. Technical note. J Neurosurg 74: 845–849PubMedCrossRefGoogle Scholar
  9. 9.
    Barnett GH, Kormos DW, Steiner CP, et al (1993) Intraoperative localization using an armless, frameless stereotactic wand. J Neurosurg 78: 510–514PubMedCrossRefGoogle Scholar
  10. 10.
    Tan KK, Grzeszczuk R, Levin DN, et al (1993) A frameless stereotactic approach to neurosurgical planning based on retrospective patient-image registration. Technical note. J Neurosurg 79: 296–303PubMedCrossRefGoogle Scholar
  11. 11.
    Reinhardt HF, Horstmann GA, Gratzl 0 (1993) Sonic stereometry in microsurgical procedures for deep-seated brain tumors and vascular malformations. Neurosurgery 32: 5157PubMedCrossRefGoogle Scholar
  12. 12.
    Barnett GH, Kormos DW, Steiner CP, et al (1993) Use of a frameless, armless stereotactic wand for brain tumor localization with two-dimensional and three-dimensional neuro-imaging. Neurosurgery 33: 674–678PubMedCrossRefGoogle Scholar
  13. 13.
    Golfinos JG, Fitzpatrick BC, Smith LR, et al (1995) Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg 83: 197–205PubMedCrossRefGoogle Scholar
  14. 14.
    Grimson WEL, Ettinger GJ, White SJ, et al (1996) An automatic registration method for frameless stereotaxy, image-guided surgery, and enhanced reality visualization. IEEE Trans Med Imaging 15: 129–140PubMedCrossRefGoogle Scholar
  15. 15.
    Gleason PL, Kikinis R, Altobelli D, et al (1994) Video registration virtual reality for nonlinkage stereotactic surgery. Stereotactic Funct Neurosurg 63: 139–143CrossRefGoogle Scholar
  16. 16.
    Kikinis R, Gleason PL, Moriarty TM, et al (1996) Computer-assisted interactive three-dimensional planning for neurosurgical procedures. Neurosurgery 38: 640–651PubMedCrossRefGoogle Scholar
  17. 17.
    Nakajima S, Atsumi H, Kikinis R, et al (1997) Use of cortical surface vessel registration for image-guided neurosurgery. Neurosurgery 40: 1201–1208PubMedCrossRefGoogle Scholar
  18. 18.
    Nakajima S, Atsumi H, Bhalerao AH, et al (1997) Computer-assisted surgical planning for cerebrovascular neurosurgery. Neurosurgery 41: 403–409PubMedCrossRefGoogle Scholar
  19. 19.
    Kettenbach J, Richolt JA, Hata N, et al (1997) Surgical Planning Laboratory: a new challenge for radiology? In: Computer-assisted radiology. Elsevier, AmsterdamGoogle Scholar
  20. 20.
    Hu X, Tan KK, Levin DN, et al (1990) Three-dimensional magnetic resonance images of the brain: application to neurosurgical planning. J Neurosurg 72: 433–440PubMedCrossRefGoogle Scholar
  21. 21.
    Aoki S, Sasaki Y, Machida T, et al (1992) Cerebral aneurysms: detection and delineation using 3-D-CT angiography. AJNR 13: 1115–1120PubMedGoogle Scholar
  22. 22.
    Schwartz RB, Jones KM, Chernoff DM, et al (1992) Common carotid artery bifurcation: evaluation with spiral CT—work in progress. Radiology 185: 513–519PubMedGoogle Scholar
  23. 23.
    Castillo M, Wilson JD (1994) CT angiography of the common carotid artery bifurcation: comparison between two techniques and conventional angiography. Neuroradiology 36: 602–604PubMedCrossRefGoogle Scholar
  24. 24.
    Schwartz, RB (1994) Neuroradiological applications of spiral CT. Semin Ultrasound CT MR 15: 139–147PubMedCrossRefGoogle Scholar
  25. 25.
    Koyama T, Okudera H, Kobayashi S (1995) Computer-assisted geometric design of cerebral aneurysms for surgical simulation. Neurosurgery 36: 541–547PubMedCrossRefGoogle Scholar
  26. 26.
    Tampieri D, Leblanc R, Pleszek J, et al (1995) Three-dimensional computed tomographic angiography of cerebral aneurysms. Neurosurgery 36: 749–755PubMedCrossRefGoogle Scholar
  27. 27.
    Kelly PJ, Kall BA, Goerss SJ (1988) Results of computed tomography-based computer-assisted stereotactic resection of metastatic intracranial tumors. Neurosurgery 22: 7–17PubMedGoogle Scholar
  28. 28.
    Kelly PJ (1988) Volumetric stereotactic surgical resection of intra-axial brain mass lesions. Mayo Clin Proc 63: 1186–1198PubMedGoogle Scholar
  29. 29.
    Kelly PJ, Kall BA, Goerss S, et al (1986) Computer-assisted stereotactic laser resection of intra-axial brain neoplasms. J Neurosurg 64: 427–439PubMedCrossRefGoogle Scholar
  30. 30.
    Hata N, Wells WM III, Halle M, et al (1996) Image-guided microscopic surgery system using mutual-information based registration. In: Proceedings of 4th international conference on visualization in biomedical computing (VBC ‘86), Hamburg, Germany, pp 307–316Google Scholar
  31. 31.
    Pillay PK (1997) Image-guided stereotactic neurosurgery with the multicoordinate manipulator microscope. Surg Neurol 47: 171–177PubMedCrossRefGoogle Scholar
  32. 32.
    Katada K, Kato R, Anno H, et al (1996) Guidance with real-time CT fluoroscopy: early clinical experience. Radiology 200: 851–856PubMedGoogle Scholar
  33. 33.
    Jolesz FA, Blumenfeld SM (1994) Interventional use of magnetic resonance imaging. Magn Reson Q 10: 85–96PubMedGoogle Scholar
  34. 34.
    Schenck JF, Jolesz FA, Roemer PB, et al (1995) Superconducting open-configuration MR imaging system for image-guided therapy. Radiology 195: 805–814PubMedGoogle Scholar
  35. 35.
    Silverman SG, Collick BD, Figueira MR, et al (1995) Interactive MR-guided biopsy in an open-configuration MR imaging system. Radiology 197: 175–181PubMedGoogle Scholar
  36. 36.
    Moriarty TM, Kikinis R, Jolesz FA, et al (1996) Magnetic resonance imaging therapy: intraoperative MR imaging. Neurosurg Clin North Am 7: 323–331Google Scholar
  37. 37.
    Kaufman L, Arakawa M, Hale J, et al (1989) Accessible magnetic resonance imaging. Magn Reson Q 5: 283–297PubMedGoogle Scholar
  38. 38.
    Gronemeyer DH, Kaufman L, Rothschild P, et al (1989) New possibilities and aspects of low-field magnetic resonance tomography. Radiol Diagn 30: 519–527Google Scholar
  39. 39.
    Gronemeyer DHW, Seibel RM, Kaufman L, et al (1991) Low-field design eases MRI-guided biopsies. Diagn Imaging 47: 139–143Google Scholar
  40. 40.
    Gronemeyer DHW, Seibel RM, Schmidt A (1995) Image-guided access techniques. Endosc Surg 3: 69–75Google Scholar
  41. 41.
    Ortendahl DA, Kaufman L (1995) Real-time interactions in MRI. Comput Biol Med 25: 293–300PubMedCrossRefGoogle Scholar
  42. 42.
    Lu DSK, Lee H, Farahani K, et al (1997) Biopsy of hepatic dome lesions: Semi-real-time coronal MR guidance technique. AJR (Am J Roentgenol) 168: 737–739Google Scholar
  43. 43.
    Anzai Y, Desalles AA, Black KL, et al (1993) Interventional MR imaging. RadioGraphics 13: 897–904Google Scholar
  44. 44.
    Guttmann CRG, Ahn SS, Hsu L, et al (1996) The evolution of multiple sclerosis lesions on serial MR. AJNR 16: 1481–1491Google Scholar
  45. 45.
    Shenton ME, Kikinis R, Jolesz FA, et al (1992) Abnormalities of the temporal lobe and thought disorders in schizophrenia. A quantitative magnetic resonance imaging study. N Engl J Med 327: 604–612PubMedCrossRefGoogle Scholar
  46. 46.
    Jolesz FA, Lorensen WE, Shinmoto H, et al (1997) Interactive virtual endoscopy. AJR (Am J Roentgenol) (in press)Google Scholar
  47. 47.
    Matsumae M, Kikinis R, Mórocz IA, et al (1996) Intracranial compartment volumes in patients with enlarged ventricles assessed by MRI based image processing. J Neurosurg 84: 972–981PubMedCrossRefGoogle Scholar
  48. 48.
    Matsumae M, Kikinis R, Mórocz IA, et al (1996) Age-related changes in intracranial cornpartment volumes in normal adults assessed by magnetic resonance imaging. J Neurosurg 84: 982–991PubMedCrossRefGoogle Scholar
  49. 49.
    Matsumoto R, Oshio K, Jolesz FA (1992) Monitoring of laser and freezing-induced ablation in the liver with T,-weighted MR imaging. J Magn Reson Imaging 2: 555–562PubMedCrossRefGoogle Scholar
  50. 50.
    Matsumoto R, Selig AM, Colucci VM, et al (1993) MR monitoring during cryotherapy in the liver: predictability of histologic outcome. J Magn Reson Imaging 3: 770–776PubMedCrossRefGoogle Scholar
  51. 51.
    Cline HE, Schenck JF, Hynynen K, et al (1992) MR-guided focused ultrasound surgery. J Comput Assist Tomogr 16: 956–965PubMedCrossRefGoogle Scholar
  52. 52.
    Darkazanli A, Hynynen K, Unger EC, et al (1993) On-line monitoring of ultrasonic surgery with MR imaging. J Magn Reson Imaging 3: 509–514PubMedCrossRefGoogle Scholar
  53. 53.
    Cline HE, Dumoulin CL, Lorensen WE, et al (1989) 3D reconstruction of the brain from magnetic resonance images using a connectivity algorithm. Magn Reson Imaging 5: 345–352CrossRefGoogle Scholar
  54. 54.
    Cline HE, Lorensen WE, Kikinis R, et al (1990) Three-dimensional segmentation of MR images of the head using probability and connectivity. J Comput Assist Tomogr 14: 1037–1045CrossRefGoogle Scholar
  55. 55.
    Cline HE, Lorensen WE, Ludke S, et al (1988) Two algorithms for the three-dimensional reconstruction of tomograms. Med Phys 15: 320–327PubMedCrossRefGoogle Scholar
  56. 56.
    Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction system. Comput Graphics 21: 163–169CrossRefGoogle Scholar
  57. 57.
    Cline HE, Lorensen WE, Souza SP, et al (1991) 3D surface rendered MR images of the brain and its vasculature. Technical note. J Comput Assist Tomogr 15: 344–351PubMedCrossRefGoogle Scholar
  58. 58.
    Wells WM III, Viola P, Atsumi H, et al (1996) Multi-modal volume registration by maximization of mutual information. Med Image Anal 1: 35–51PubMedCrossRefGoogle Scholar
  59. 59.
    Koller T, Gerig G, Székely G, et al (1995) Multiscale detection of curvilinear structures in 2D and 3-D image data. In: Proceedings of fifth international conference on computer vision (ICCV ‘85). IEEE Computer Society Press, Los Alamitos, pp 864–869CrossRefGoogle Scholar
  60. 60.
    Sato Y, Nakajima S, Atsumi H, et al (1997) 3D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. Springer, Berlin Heidelberg New York, pp 213–222CrossRefGoogle Scholar
  61. 61.
    Bhalerao AH, Summers PE (1995) A multiresolution approach to flow feature extraction from phase contrast MRA. In: Bizais Y, Barillor C, Paola RD (eds) Proceedings of 14th international conference of information processing in medical imaging. Kluwer, Dordrecht, pp 397–398Google Scholar
  62. 62.
    Bhalerao A, Westin C-F, Kikinis R (1997) Unwrapping phase in 3D MR phase contrast angiograms. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. Springer, Berlin Heidelberg New York, pp 193–202Google Scholar
  63. 63.
    Spetzler RF, Martin NA (1986) A proposed grading system for arteriovenous malformations. J Neurosurg 65: 476–483PubMedCrossRefGoogle Scholar
  64. 64.
    Hill DLG, Aurer CR, Wang MY, et al (1997) Estimation of intraoperative brain surface movement. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. Springer, Berlin Heidelberg New York, pp 449–458CrossRefGoogle Scholar
  65. 65.
    Bucholz RD, Yeh DD, Trobaugh J, et al (1997) The correction of stereotactic inaccuracy caused by brain shift using an intraoperative ultrasound device. In: Troccaz J, Grimson E, Mösges R (eds) CVRMed-MRCAS’97. Springer, Berlin Heidelberg New York, pp 459–466CrossRefGoogle Scholar
  66. 66.
    Nazzaro JM, Neuwelt EA (1990) The role of surgery in the management of supratentorial intermediate and high-grade astrocytomas in adults. J Neurosurg 73: 331–344PubMedCrossRefGoogle Scholar
  67. 67.
    Curran WJ Jr, Scott CB, Horton J, et al (1992) Does extent of surgery influence outcome for astrocytoma with atypical or anaplastic foci (AAF)? A report from three Radiation Therapy Oncology Group ( RTOG) trials. J Neuro-Oncol 12: 219–227CrossRefGoogle Scholar
  68. 68.
    Albert FK, Forsting M, Sartor K, et al (1994) Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery 34: 45–61PubMedCrossRefGoogle Scholar
  69. 69.
    Kowalczuk A, Macdonald RL, Amidei C, et al (1996) Quantitative postoperative imaging study of the effect of surgical resection of malignant astrocytomas on survival. In: Poster program of the 64th annual meeting of the american association of neurological surgeons. American Association of Neurological Surgeons, Park Ridge, pp 304–305Google Scholar

Copyright information

© Springer-Verlag Tokyo 1997

Authors and Affiliations

  • Shin Nakajima
    • 1
    • 6
  • Ron Kikinis
    • 1
    • 6
  • Peter McL. Black
    • 2
    • 6
  • Hideki Atsumi
    • 1
    • 6
  • Michael E. Leventon
    • 3
  • Nobuhiko Hata
    • 1
    • 6
  • David C. Metcalf
    • 1
    • 4
  • Thomas M. Moriarty
    • 2
    • 6
  • Eben AlexanderIII
    • 2
    • 6
  • Ferenc A. Jolesz
    • 5
    • 6
  1. 1.Image-Guided Therapy Program and Surgical Planning Laboratory, Department of RadiologyBrigham and Women’s HospitalBostonUSA
  2. 2.Division of NeurosurgeryBrigham and Women’s HospitalBostonUSA
  3. 3.Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.Department of Computer ScienceBoston UniversityBostonUSA
  5. 5.Department of RadiologyBrigham and Women’s HospitalBostonUSA
  6. 6.Harvard Medical SchoolBostonUSA

Personalised recommendations