Advertisement

High-Performance Interface

  • Motoyasu Kobayashi
  • Atsushi TakaharaEmail author
Chapter

Abstract

High-performance soft interfaces were designed by tethering various polyelectrolyte brushes with anionic, cationic, and zwitterionic functional groups on substrate surfaces using a surface-initiated controlled radical polymerization technique. Ion-containing polymer brushes afforded superhydrophilic surfaces inducing antifouling properties in water. Repeatable adhesion systems without organic solvents were achieved through oppositely charged polyelectrolyte brushes by controlling the electrostatic attractive interaction between the brushes. Environmentally friendly water lubrication systems were also demonstrated by the high-density ion-containing polymer brushes.

Keywords

Polymer brushes Polyelectrolytes Zwitterion Wettability Antifouling Adhesion Friction Wear Tribology 

References

  1. 1.
    Rühe J (2004) Polymer brushes on the way to tailor-made surfaces. In: Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) Polymer brushes: synthesis, characterization, applications. Wiley VCH, Weinheim, pp 1–31Google Scholar
  2. 2.
    Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T (2006) Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization. Adv Polym Sci 197:1–45CrossRefGoogle Scholar
  3. 3.
    Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677–710CrossRefGoogle Scholar
  4. 4.
    Kobayashi M, Ishikwa T, Takahara A (2013) Adhesion and tribological characteristics of ion-containing polymer brushes prepared by controlled radical polymerization. In: Zeng H (ed) Polymer adhesion, friction, and lubrication. John Wiley & Sons Inc., Hoboken, pp 59–82CrossRefGoogle Scholar
  5. 5.
    Sommer S, Ekin A, Webster DC, Stafslien SJ, Daniels J, VanderWal LJ, Thompson SE, Callow ME, Callow JA (2010) A preliminary study on the properties and fouling-release performance of siloxane-polyurethane coatings prepared from poly(dimethylsiloxane) (PDMS) macromers. Biofouling 26:961–972CrossRefGoogle Scholar
  6. 6.
    Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA (2006) Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom navicula and the green alga ulva. Biomacromol 7:1449–1462CrossRefGoogle Scholar
  7. 7.
    Yarbrough JC, Rolland JP, DeSimone JM, Callow ME, Finlay JA, Callow JA (2006) Contact angle analysis, surface dynamics, and biofouling characteristics of cross-linkable, random perfluoropolyether-based graft terpolymers. Macromolecules 39:2521–2528CrossRefGoogle Scholar
  8. 8.
    Brady RF Jr, Singer IL (2000) Mechanical factors favoring release from fouling release coatings. Biofouling 15:73–81CrossRefGoogle Scholar
  9. 9.
    Lejars M, Margaillan A, Bressy C (2012) Fouling release coatings: a nontoxic alternative to biocidal antifouling coatings. Chem Rev 112:4347–4390CrossRefGoogle Scholar
  10. 10.
    Krishnan S, Weinman CJ, Ober CK (2008) Advances in polymers for anti-biofouling surfaces. J Mater Chem 18:3405–3413CrossRefGoogle Scholar
  11. 11.
    Dalsin JL, Messersmith PB (2005) Bioinspired antifouling polymers. Mater Today 8:38–46CrossRefGoogle Scholar
  12. 12.
    Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21:2441–2446CrossRefGoogle Scholar
  13. 13.
    Tripathi BP, Dubey NC, Choudhury S, Stamm M (2012) Antifouling and tunable amino functionalized porous membranes for filtration applications. J Mater Chem 22:19981–19992CrossRefGoogle Scholar
  14. 14.
    Li GZ, Cheng G, Xue H, Chen S, Zhang F, Jiang S (2008) Ultra low fouling zwitterionic polymers with a biomimetic adhesive group. Biomaterials 29:4592–4597CrossRefGoogle Scholar
  15. 15.
    Higaki Y, Nishida J, Takenaka A, Yoshimatsu R, Kobayashi M, Takahara A (2015) Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym J 47:811–818CrossRefGoogle Scholar
  16. 16.
    Holmlin RE, Chen X, Chapman RG, Takayama S, Whitesides GM (2001) Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir 17:2841–2850CrossRefGoogle Scholar
  17. 17.
    Jiang S, Cao Z (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932CrossRefGoogle Scholar
  18. 18.
    Ederth T, Ekblad T, Pettitt ME, Conlan SL, Du CX, Callow ME, Callow JA, Mutton R, Clare AS, D’Souza F, Donnelly G, Bruin A, Willemsen PR, Su XJ, Wang S, Zhao Q, Hederos M, Konradsson P, Liedberg B (2011) Resistance of galactoside-terminated alkanethiol self-assembled monolayers to marine fouling organisms. ACS Appl Mater Interfaces 3:3890–3901CrossRefGoogle Scholar
  19. 19.
    Luk YY, Kato M, Mrksich M (2000) Self-assembled monolayers of alkanethiolates presenting mannitol groups are inert to protein adsorption and cell attachment. Langmuir 16:9604–9608CrossRefGoogle Scholar
  20. 20.
    Chelmowski R, Köster SD, Kerstan A, Prekelt A, Grunwald C, Winkler T, Metzler-Nolte N, Terfort A, Wöll C (2008) Peptide-based SAMs that resist the adsorption of proteins. J Am Chem Soc 130:14952–14953CrossRefGoogle Scholar
  21. 21.
    Statz AR, Meagher RJ, Barron AE, Messersmith PB (2005) New peptidomimetic polymers for antifouling surfaces. J Am Chem Soc 127:7972–7973CrossRefGoogle Scholar
  22. 22.
    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620CrossRefGoogle Scholar
  23. 23.
    Kobayashi M, Terayama Y, Yamaguchi H, Terada M, Murakami D, Ishihara K, Takahara A (2012) Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28:7212–7222CrossRefGoogle Scholar
  24. 24.
    Murakami D, Kobayashi M, Moriwaki T, Ikemoto Y, Jinnai H, Takahara A (2013) Spreading and structuring of water on superhydrophilic polyelectrolyte brush surfaces. Langmuir 29:1148–1151CrossRefGoogle Scholar
  25. 25.
    Yamaguchi H, Honda K, Kobayashi M, Morita M, Masunaga H, Sakata O, Sasaki S, Takahara A (2008) Molecular aggregation state of surface-grafted poly{2-(perfluorooctyl)ethyl acrylate} thin film analyzed by grazing incidence x-ray diffraction. Polym J 40:854–860CrossRefGoogle Scholar
  26. 26.
    Yamaguchi H, Kikuchi M, Kobayashi M, Ogawa H, Masunaga H, Sakata O, Takahara A (2012) Influence of molecular weight dispersity of poly{2-(perfluorooctyl)ethyl acrylate} brushes on their molecular aggregation states and wetting behavior. Macromolecules 45:1509–1516CrossRefGoogle Scholar
  27. 27.
    Kobayashi M, Terada M, Terayama Y, Kikuchi M, Takahara A (2010) Direct synthesis of well-defined poly[{2-(methacryloyloxy)ethyl}trimethylammonium chloride] brush via surface-initiated atom transfer radical polymerization in fluoroalcohol. Macromolecules 43:8408–8415CrossRefGoogle Scholar
  28. 28.
    Kobayashi M, Terayama Y, Hosaka N, Kaido M, Suzuki A, Yamada N, Torikai N, Ishihara K, Takahara A (2007) Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter 3:740–746CrossRefGoogle Scholar
  29. 29.
    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  30. 30.
    Kobayashi M, Matsugi T, Saito J, Imuta J, Kashiwa N, Takahara A (2013) Direct modification of polyolefin films by surfaceinitiated polymerization of a phosphobetaine monomer. Polym Chem 4:731–739CrossRefGoogle Scholar
  31. 31.
    Chen KS, Uyama Y, Ikada Y (1994) Adhesive interaction between polymer surfaces grafted with water soluble polymer chains. Langmuir 10:1319–1322CrossRefGoogle Scholar
  32. 32.
    Thünemann AF, Müller M, Dautzenberg H, Joanny JF, Löwen H (2004) Polyelectrolyte complexes. Adv Polym Sci 166:113–171CrossRefGoogle Scholar
  33. 33.
    LaSpina R, Tomlinson MR, Ruiz-Pérez L, Chiche A, Langridge S, Geoghegan M (2007) Controlling netweork-brush interactions to achieve switchable adhesion. Angew Chem Int Ed 46:6460–6463CrossRefGoogle Scholar
  34. 34.
    Sudre G, Olanier L, Tran Y, Hourdet D, Creton C (2012) Reversible adhesion between a hydrogel and a polymer brush. Soft Matter 8:8184–8193CrossRefGoogle Scholar
  35. 35.
    Kobayashi M, Terada M, Takahara A (2011) Reversible adhesive-free nanoscale adhesion utilizing oppositely charged polyelectrolyte brushes. Soft Matter 7:5717–5722CrossRefGoogle Scholar
  36. 36.
    Li ZF, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ (1997) Surface structures and adhesive-free adhesion characteristics of polyaniline films after modification by graft copolymerization. Macromolecules 30:3354–3362CrossRefGoogle Scholar
  37. 37.
    Kang ET, Shi JL, Neoh KG, Tan KL, Liaw DJ (1998) Surface modification of polytetrafluoroethylene films via graft copolymerization for auto-adhesion. J Polym Sci Part A Polym Chem 36:3107–3114CrossRefGoogle Scholar
  38. 38.
    Han HS, Tan KL, Kang ET, Neoh KG (1998) Low-temperature graft copolymerization of 1-vinyl imidazole on low-density polyethylene films with simultaneous lamination of copper foils. J Appl Polym Sci 70:1977–1983CrossRefGoogle Scholar
  39. 39.
    Wang T, Kang ET, Neoh KG, Tan KL, Liaw DJ (1998) Surface modification of low-density polyethylene films by UV-induced graft copolymerization and its relevance to photolamination. Langmuir 14:921–927CrossRefGoogle Scholar
  40. 40.
    Chen W, Neoh KG, Kang ET, Tan KL, Liaw DJ, Huang CC (1998) Surface modification and adhesion characteristics of polycarbonate films after graft copolymerization. J Polym Sci Part A Polym Chem 36:357–366CrossRefGoogle Scholar
  41. 41.
    Kang ET, Neoh KG, Li ZF, Tan KL, Liaw DJ (1998) Surface modification of polymer films by graft copolymerization for adhesive-free adhesion. Polymer 39:2429–2436CrossRefGoogle Scholar
  42. 42.
    Ma ZH, Han HS, Tan KL, Kang ET, Neoh KG (1999) Surface graft copolymerization induced adhesion of polyaniline film to polytetra-fluoroethylene film and copper foil. Eur Polym J 35:1279–1288CrossRefGoogle Scholar
  43. 43.
    Liu YX, Kang ET, Neoh KG, Tan KL, Huang CC, Liaw DJ (1999) Lamination of polytetrafluoroethylene films via surface thermal graft copolymerization with ionic and zwitterionic monomers. J Appl Polym Sci 74:816–824CrossRefGoogle Scholar
  44. 44.
    Ma ZH, Han HS, Tan KL, Kang ET, Neoh KG (1999) Thermally induced surface graft copolymerization with concurrent lamination of polyaniline films under atmospheric conditions. Int J Adhes Adhes 19:359–365CrossRefGoogle Scholar
  45. 45.
    Lowe AB, McCormick CL (2002) Synthesis and solution properties of zwitterionic polymers. Chem Rev 102:4177–4189CrossRefGoogle Scholar
  46. 46.
    Lowe AB, McCormick CL (2006) Synthesis aqueous solution properties, and biomedical application of polymeric betaines. In: Lowe AB, McCormick CL (eds) Polyelectrolytes and polyzwitterions: synthesis, properties, and applications. ACS Books, Washington DC, pp 65–78CrossRefGoogle Scholar
  47. 47.
    Chen S, Jiang S (2008) An new avenue to nonfouling materials. Adv Mater 20:335–338CrossRefGoogle Scholar
  48. 48.
    West SL, Salvage JP, Lobb EJ, Armes SP, Billingham NC, Lewis AL, Hanlon GW, Lloyd AW (2004) The biocompatibility of crosslinkable copolymer coatings containing sulfobetaines and phosphobetaines. Biomaterials 25:1195–1204CrossRefGoogle Scholar
  49. 49.
    Zhang Z, Zhang M, Chen S, Horbett TA, Ratner BD, Jiang S (2008) The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 29:4719–4725CrossRefGoogle Scholar
  50. 50.
    Ladd J, Zhang Z, Chen S, Hower JC, Jiang S (2008) Zwitterionic polymers exhibiting high resistance to nonspecific protein adsorption from human serum and plasma. Biomacromol 9:1357–1361CrossRefGoogle Scholar
  51. 51.
    Kobayashi M, Takahara A (2013) Environmentally friendly repeatable adhesion using a sulfobetaine-type polyzwitterion brush. Polym Chem 4:4987–4992CrossRefGoogle Scholar
  52. 52.
    Schulz DN, Peiffer DG, Agarwal PK, Larabee J, Kaladas JJ, Soni L, Handwerker B, Garner RT (1986) Phase behaviour and solution properties of sulphobetaine polymers. Polymer 27:1734–1742CrossRefGoogle Scholar
  53. 53.
    Chen L, Honma Y, Mizutani T, Liaw DJ, Gong JP, Osada Y (2000) Effects of polyelectrolyte complexation on the UCST of zwitterionic polymer. Polymer 41:141–147CrossRefGoogle Scholar
  54. 54.
    Klein J (2001) Interactions friction and lubrication between polymer-bearing surfaces In: Bhushan B (ed) Fundamentals of tribology and bridging the gap between the macro- and micro/nanoscales. Kluwer Academic Publishers, Dordrecht, pp 177–198CrossRefGoogle Scholar
  55. 55.
    Klein J, Perahia D, Warburg S (1991) Forces between polymer-bearing surfaces undergoing shear. Nature 352:143–145CrossRefGoogle Scholar
  56. 56.
    Klein J, Kumacheva E, Mahalu D, Perahia D, Fetters LJ (1994) Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370:634–636CrossRefGoogle Scholar
  57. 57.
    Kampf N, Gohy JF, Jerome R, Klein J (2005) Normal and shear forces between a polyelectrolyte brush and a solid surface. J Polym Sci Part B Polym Phys 43:193–204CrossRefGoogle Scholar
  58. 58.
    Raviv U, Giasson S, Kamph N, Gohy JF, Jérôme R, Klein J (2003) Lubrication by charged polymers. Nature 425:163–165CrossRefGoogle Scholar
  59. 59.
    Nomura A, Okayasu K, Ohono K, Fukuda T, Tsujii Y (2011) Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44:5013–5019CrossRefGoogle Scholar
  60. 60.
    Ruhe J, Ballauff M, Biesalski M, Dziezok P, Gröhn F, Johannsmann D, Houbenov N, Hugenberg N, Konradi R, Minko S, Motornov M, Netz RR, Schmidt M, Seidel C, Stamm M, Stephan T, Usov D, Zhang H (2004) Adv Polym Sci 165–166:79–150CrossRefGoogle Scholar
  61. 61.
    Luzinov I, Minko S, Tsukruk VV (2004) Adaptive and responsive surfaces through controlled reorganization of interfacial polymer layers. Prog Polym Sci 29:635–698CrossRefGoogle Scholar
  62. 62.
    Miklavic SJ, Marčelja S (1988) Interaction of surfaces carrying grafted polyelectrolytes. J Phys Chem 92:6718–6722CrossRefGoogle Scholar
  63. 63.
    Klein J, Raviv U, Perkin S, Kampf N, Chai L, Giasson S (2004) Fluidity of water and of hydrated ions confined between solid surfaces to molecularly thin films. J Phys Condens Matter 16:S5437–S5448CrossRefGoogle Scholar
  64. 64.
    Raviv U, Klein J (2002) Fluidity of bound hydration layers. Science 297:1540–1543CrossRefGoogle Scholar
  65. 65.
    Israels R, Leermakers FAM, Fleer GJ, Zhulina EB (1994) Charged polymeric brushes: structure and scaling relations. Macromolecules 27:3249–3261CrossRefGoogle Scholar
  66. 66.
    Lyatskaya YV, Leermakers FAM, Fleer GJ, Zhulina EB, Birshtein TM (1995) Analytical self-consistent-field model of weak polyacid brushes. Macromolecules 28:3562–3569CrossRefGoogle Scholar
  67. 67.
    Zhulina EB, Wolterink JK, Borisov OV (2000) Screening effects in a polyelectrolyte brush: self-consistent-field theory. Macromolecules 33:4945–4953CrossRefGoogle Scholar
  68. 68.
    Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919CrossRefGoogle Scholar
  69. 69.
    Ross RS, Pincus P (1992) The polyelectrolyte brush: poor solvent. Macromolecules 25:2177–2183CrossRefGoogle Scholar
  70. 70.
    Pryamitsyn VA, Leermakers FAM, Fleer GJ, Zhulina EB (1996) Theory of the collapse of the polyelectrolyte brush. Macromolecules 29:8260–8270CrossRefGoogle Scholar
  71. 71.
    Taunton HJ, Toprakcioglu C, Fetters LJ, Klein J (1988) Forcers between surfaces bearing terminally anchored polymer chains in good solvents. Nature 332:712–714CrossRefGoogle Scholar
  72. 72.
    Eiser E, Klein J, Witten TA, Fetters LJ (1999) Shear of telechelic brushes. Phys Rev Lett 82:5076–5079CrossRefGoogle Scholar
  73. 73.
    Hayashi S, Abe T, Higashi N, Niwa M, Kurihara K (2002) Polyelectrolyte brush layers studied by surface forces measurement: dependence on ph and salt concentrations and scaling. Langmuir 18:3932–3944CrossRefGoogle Scholar
  74. 74.
    Kampf N, Ben-Yaakov D, Andelman D, Safran SA, Klein J (2009) Direct measurement of sub-debye-length attraction between oppositely charged surfaces. Phys Rev Lett 103:118304CrossRefGoogle Scholar
  75. 75.
    Kelley TW, Shorr PA, Kristin DJ, Tirrell M, Frisbie CD (1998) Direct force measurements at polymer brush surfaces by atomic force microscopy. Macromolecules 31:4297–4300CrossRefGoogle Scholar
  76. 76.
    Kobayashi M, Takahara A (2010) Tribological properties of hydrophilic polymer brushes under wet conditions. Chem Record 10:208–216CrossRefGoogle Scholar
  77. 77.
    Ishikawa T, Kobayashi M, Takahara A (2010) Macroscopic frictional properties of poly(1-(2-methacryloyloxy)ethyl-3-butyl Imidazolium Bis(trifluoromethanesulfonyl)imide) brush surfaces in an ionic liquid. Appl Mat Interfaces 2:1120–1128CrossRefGoogle Scholar
  78. 78.
    Sakata H, Kobayashi M, Otsuka H, Takahara A (2005) Tribological properties of poly(methyl methacrylate) brushes prepared by surface-initiated atom transfer radical polymerization. Polym J 37:767–775CrossRefGoogle Scholar
  79. 79.
    Kobayashi M, Takahara A (2005) Synthesis and frictional properties of poly(2,3-dihydroxypropyl methacrylate) brush prepared by surface-initiated atom transfer radical polymerization. Chem Lett 34:1582–1583CrossRefGoogle Scholar
  80. 80.
    Kobayashi M, Terada M, Ishikawa T, Takahara A (2013) Tribological behavior of ionic polymer brushes in aqueous environment. In: Biresaw G, Mittal KL (eds) Surfactants in tribology, vol 3. CRC Press, Boca Raton, pp 75–92CrossRefGoogle Scholar
  81. 81.
    Kobayashi M, Wang Z, Matsuda Y, Kaido M, Suzuki A, Takahara A (2009) Tribological behavior of polymer brush prepared by the “grafting-from” method. In: Kumar SS (ed) Polymer Tribology. Imperial College Press, UK, pp 582–602CrossRefGoogle Scholar
  82. 82.
    Spikes HA (1993) Boundary lubrication and boundary films. In: Dowson D, Talor CM, Childs THC, Godet M, Dalmz G (eds) Thin films in tribology. Elsevier, New York, pp 331–346Google Scholar
  83. 83.
    Kobayashi M, Tanaka H, Minn M, Sugimura J, Takahara A (2014) Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. ACS Appl Mater Interfaces 6: 20365–20371CrossRefGoogle Scholar
  84. 84.
    Bielecki RM, Crobu M, Spencer ND (2013) Polymer-Brush lubrication in oil: sliding beyond the stribeck curve. Tribol Lett 49:263–272CrossRefGoogle Scholar
  85. 85.
    Ishihara K, Ueda T, Nakabayashi N (1990) Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym J 22:355–360CrossRefGoogle Scholar
  86. 86.
    Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A (2008) Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir 24:8772–8778CrossRefGoogle Scholar
  87. 87.
    Ishihara K, Nomura H, Mihara T, Kurita K, Iwasaki Y, Nakabayashi N (1998) Why do phospholipid polymers reduce protein adsorption? J Biomed Mater Res 39:323–330CrossRefGoogle Scholar
  88. 88.
    Chen M, Briscoe WH, Armes SP, Klein J (2009) Lubrication at physiological pressures by polyzwitterionic brushes. Science 323:1698–1701CrossRefGoogle Scholar
  89. 89.
    Chen M, Briscoe WH, Armes SP, Cohen H, Klein J (2011) Polyzwitterionic brushes: extreme lubrication by design. Eur Polym J 47:511–523CrossRefGoogle Scholar
  90. 90.
    Moro T, Takatori Y, Ishihara K, Konno T, Takigawa Y, Matsushita T, Chung U, Nakamura K, Kawaguchi H (2004) Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nature Mater 3:829–836CrossRefGoogle Scholar
  91. 91.
    Moro T, Kawaguchi H, Ishihara K, Kyomoto M, Karita T, Ito H, Nakamura K, Takatori Y (2009) Wear resistance of artificial hip joints with poly(2-methacryloyloxyethyl phosphorylcholine) grafted polyethylene: Comparisons with the effect of polyethylene cross-linking and ceramic femoral heads. Biomaterials 30:2995–3001CrossRefGoogle Scholar
  92. 92.
    Kobayashi M, Takahara A (2012) Polyelectrolyte brushes: a novel stable lubrication system in aqueous conditions. Faraday Discuss 156:403–412CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Advanced EngineeringKogakuin UniversityTokyoJapan
  2. 2.Institute for Materials Chemistry and Engineering, Kyushu UniversityFukuokaJapan
  3. 3.Japan Science and Technology Agency, ERATO Takahara Soft Interfaces ProjectFukuokaJapan

Personalised recommendations