Introduction, Materials and Methods, and References

  • Noriko Kumazawa-Manita
  • Tsutomu Hashikawa
  • Atsushi Iriki
Part of the Brain Science book series (BRASC)


Degu (Octodon degus), a rodent native to the Andes Mountains in South America, is commonly known as the trumpet-tailed rat and belongs to the parvorder Caviomorpha along with the chinchilla and guinea pig. As experimental animal models, degus contribute to a variety of medical research fields, for example, those pertaining to diabetes, hyperglycemia, pancreatic function, and adaptation to high altitude. The degu recently gained increasing importance in the field of neuroscience, particularly in studies evaluating the relationship between sociality and cognitive brain functions (Fuchs et al. 2010; Helmeke et al. 2009) and studies pertaining to the evolutional aspects of the acquisition of tool-use abilities (Okanoya et al. 2008). Furthermore, aging-related brain dysfunction in humans can be studied using this animal model, in addition to some mammals with much longer life spans than the degu (Inestrosa et al. 2005; van Groen et al. 2011).


  1. Aggarwal M, Zhang J, Mori S (2011) Magnetic resonance imaging-based mouse brain atlas and its applications. Methods Mol Biol 711:251–270CrossRefGoogle Scholar
  2. Bock J, Riedel A, Braun K (2012) Differential changes of metabolic brain activity and interregional functional coupling in prefronto-limbic pathways during different stress conditions: functional imaging in freely behaving rodent pups. Front Cell Neurosci 6:19CrossRefGoogle Scholar
  3. Braidy N, Muñoz P, Palacios AG, Castellano-Gonzalez G, Inestrosa NC, Chung RS, Sachdev P, Guillemin GJ (2012) Recent rodent models for Alzheimer’s disease: clinical implications and basic research. J Neural Transm 119:173–195CrossRefGoogle Scholar
  4. Braun K, Seidel K, Holetschka R, Groeger N, Poeggel G (2012) Paternal deprivation alters the development of catecholaminergic innervation in the prefrontal cortex and related limbic brain regions. Brain Struct Funct 218(4):859–872. Scholar
  5. Braun S, Scheich H (1997) Influence of experience on the representation of the “mothering call” in frontoparietal and auditory cortex of pups of the rodent Octodon Degus: FDG mapping. J Comp Physiol A 181:697–709CrossRefGoogle Scholar
  6. Colonnello V, Iacobucci P, Fuchs T, Newberry RC, Panksepp J (2011) Octodon Degus. A useful animal model for social-affective neuroscience research: basic description of separation distress, social attachments and play. Neurosci Biobehav Rev 35:1854–1863CrossRefGoogle Scholar
  7. Ebensperger LA, Ramírez-Estrada J, León C, Castro RA, Tolhuysen LO, Sobrero R, Quirici V, Burger JR, Soto-Gamboa M, Hayes LD (2011) Sociality, glucocorticoids and direct fitness in the communally rearing rodent, Octodon Degus. Horm Behav 60:346–352CrossRefGoogle Scholar
  8. Fuchs T, Iacobucci P, MacKinnon KM, Panksepp J (2010) Infant-mother recognition in a social rodent (Octodon degus). J Comp Psychol. 124:166–175CrossRefGoogle Scholar
  9. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates compact third edition. Elsevier, LondonGoogle Scholar
  10. Helmeke C, Seidel K, Poeggel G, Bredy TW, Abraham A, Braun K (2009) Paternal deprivation during infancy results in dendrite- and time-specific changes of dendritic development and spine formation in the orbitofrontal cortex of the biparental rodent Octodon Degus. Neuroscience 163:790–798CrossRefGoogle Scholar
  11. Hjornevik T, Leergaard TB, Darine D, Moldestad O, Dale AM, Willoch F, Bjaalie JG (2007) Three-dimensional atlas system for mouse and rat brain imaging data. Front Neuroinform 1:4CrossRefGoogle Scholar
  12. Inestrosa NC, Reyes AE, Chacón MA, Cerpa W, Villalón A, Montiel J, Merabachvili G, Aldunate R, Bozinovic F, Aboitiz F (2005) Human-like rodent amyloid-beta-peptide determines Alzheimer pathology in aged wild-type Octodon degu. Neurobiol Aging 26:1023–1028CrossRefGoogle Scholar
  13. Kumazawa-Manita N, Hama H, Miyawaki A, Iriki A (2013a) Tool use specific adult neurogenesis and synaptogenesis in rodent (Octodon Degus) hippocampus. PLoS One 8(3):e58649CrossRefGoogle Scholar
  14. Kumazawa-Manita N, Katayama M, Hashikawa T, Iriki A (2013b) Three-dimensional reconstruction of brain structures of the rodent Octodon Degus: a brain atlas constructed by combining histological and magnetic resonance images. Exp Brain Res 231(1):65–74CrossRefGoogle Scholar
  15. Lee TM (2004) Octodon Degus: a diurnal, social, and long-lived rodent. ILAR J 45:14–24CrossRefGoogle Scholar
  16. Okanoya K, Tokimoto N, Kumazawa N, Hihara S, Iriki A (2008) Tool-use training in a species of rodent: the emergence of an optimal motor strategy and functional understanding. PLoS One 3:e1860. Scholar
  17. Paxinos G, Watson C (2009) The rat brain in stereotaxic coordinate. Academic Press, CambridgeGoogle Scholar
  18. Poeggel G, Braun K (1996) Early auditory filial learning in degus (Octodon Degus): behavioral and autoradiographic studies. Brain Res 743:162–170CrossRefGoogle Scholar
  19. Purger D, McNutt T, Achanta P, Quiñones-Hinojosa A, Wong J, Ford E (2009) A histology-based atlas of the C57BL/6J mouse brain deformably registered to in vivo MRI for localized radiation and surgical targeting. Phys Med Biol 54:7315–7327CrossRefGoogle Scholar
  20. Quirici V, Castro RA, Oyarzún J, Ebensperger LA (2008) Female degus (Octodon Degus) monitor their environment while foraging socially. Anim Cogn 11:441–448CrossRefGoogle Scholar
  21. Schwarz AJ, Danckaert A, Reese T, Gozzi A, Paxinos G, Watson C, Merlo-Pich EV, Bifone A (2006) A stereotaxic MRI template set for the rat brain with tissue class distribution maps and co-registered anatomical atlas: application to pharmacological MRI. NeuroImage 32:538–550CrossRefGoogle Scholar
  22. Spear GS, Caple MV, Sutherland LR (1984) The pancreas in the degu. Exp Mol Pathol 40:295–310CrossRefGoogle Scholar
  23. Toga AW, Santori EM, Hazani R, Ambach K (1995) A 3D digital map of rat brain. Brain Res Bull 38:77–85CrossRefGoogle Scholar
  24. Toga AW, Samaie M, Payne BA (1989) Digital rat brain: a computerized atlas. Brain Res Bull 22:323–333CrossRefGoogle Scholar
  25. Uekita T, Okanoya K (2011) Hippocampus lesions induced deficits in social and spatial recognition in Octodon Degus. Behav Brain Res 219:302–309CrossRefGoogle Scholar
  26. van Groen T, Kadish I, Popović N, Popović M, Caballero-Bleda M, Baño-Otálora B, Vivanco P, Rol MÁ, Madrid JA (2011) Age-related brain pathology in Octodon degu: blood vessel, white matter and Alzheimer-like pathology. Neurobiol Aging 32:1651–1661CrossRefGoogle Scholar
  27. Vosko AM, Hagenauer MH, Hummer DL, Lee TM (2009) Period gene expression in the diurnal degu (Octodon Degus) differs from the nocturnal laboratory rat (Rattus Norvegicus). Am J Physiol Regul Integr Comp Physiol 296:R353–R361CrossRefGoogle Scholar
  28. Wright JW, Kern MD (1992) Stereotaxic atlas of the brain of Octodon Degus. J Morphol 214:299–320CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Noriko Kumazawa-Manita
    • 1
  • Tsutomu Hashikawa
    • 2
  • Atsushi Iriki
    • 3
  1. 1.Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteWako-shiJapan
  2. 2.RIKEN Brain Science InstituteWako-shiJapan
  3. 3.Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science Institute & RIKEN Center for Biosystems Dynamics ResearchWako‐shiJapan

Personalised recommendations