Advertisement

Introduction

  • Tsutomu Hashikawa
  • Atsushi IrikiEmail author
  • Hirotaka James Okano
  • Erika Sasaki
  • Hideyuki Okano
Chapter
Part of the Brain Science book series (BRASC)

Abstract

The common marmoset (Callithrix jacchus), a New World monkey, has been used in a variety of biomedical studies as an animal model of nonhuman primates. It seems to be anticipated that there will be rapid surge in the interest of primate biology, since genome of this species has been sequenced recently (Marmoset Genome Sequencing and Analysis Consortium 2014). The evolution of gene manipulation technologies suggests that the use of the common marmoset will increase in future studies. In addition, the marmoset can be a useful animal model in neuroscience research. This is because among the primates, the common marmoset is available with mature adults being small in size (300–500 g), and these monkeys are easier to handle in a laboratory setting. They show high fertility, giving birth to nonidentical twins twice in a year, and earlier sexual maturity (~15 months), so that certain genetic aspects of neural functions can be analyzed in primates as well (Sasaki et al. 2009), which is important given that genetic studies that have taken place so far have been conducted mostly in mice. Furthermore, they have a well-developed brain sharing similar characteristics across various primate species (Paxinos et al. 2012). Common features of their brain structures make rather direct comparisons possible among the species. A combination of knowledge of research on Old World primates and new insights from genetic approaches in marmosets will provide a better and more comprehensive understanding of brain functions.

Bibliography

General

  1. Cyranoski D (2009) Marmoset model takes centre stage. Nature 459(7246):492.  https://doi.org/10.1038/459492a PubMedGoogle Scholar
  2. Haig D (1999) What is a marmoset? Am J Primatol 49(4):285–296.  https://doi.org/10.1002/(SICI)1098-2345(199912)49:4<285::AID-AJP1>3.0.CO;2-X PubMedGoogle Scholar
  3. Izpisua Belmonte JC et al (2015) Brains, genes, and primates. Neuron 86(3):617–631.  https://doi.org/10.1016/j.neuron.2015.03.021 PubMedGoogle Scholar
  4. Kishi N et al (2014) Common marmoset as a new model animal for neuroscience research and genome editing technology. Dev Growth Differ 56(1):53–62.  https://doi.org/10.1111/dgd.12109 PubMedGoogle Scholar
  5. Marmoset Genome Sequencing and Analysis Consortium (2014) The common marmoset genome provides insight into primate biology and evolution. Nat Genet 46(8):850–857.  https://doi.org/10.1038/ng.3042 Google Scholar
  6. Sasaki E et al (2005) Establishment of novel embryonic stem cell lines derived from the common marmoset (Callithrix jacchus). Stem Cells 23(9):1304–1313.  https://doi.org/10.1634/stemcells.2004-0366 PubMedGoogle Scholar
  7. Sasaki E et al (2009) Generation of transgenic non-human primates with germline transmission. Nature 459(7246):523–527.  https://doi.org/10.1038/nature08090 PubMedGoogle Scholar
  8. Simmons DM, Swanson LW (2009) Comparing histological data from different brains: sources of error and strategies for minimizing them. Brain Res Rev 60(2):349–367.  https://doi.org/10.1016/j.brainresrev.2009.02.002 PubMedPubMedCentralGoogle Scholar
  9. Tokuno H, Moriya-Ito K, Tanaka I (2012) Experimental techniques for neuroscience research using common marmosets. Exp Anim 61(4):389–397. http://www.ncbi.nlm.nih.gov/pubmed/22850638 PubMedGoogle Scholar
  10. Tokuno H et al (2009) Stereo Navi 2.0: software for stereotaxic surgery of the common marmoset (Callithrix jacchus). Neurosci Res 65(3):312–315.  https://doi.org/10.1016/j.neures.2009.08.004 PubMedGoogle Scholar

Marmoset Brain Atlases and Referred Brain Atlases of Other Animals

  1. Allen Institute for Brain Science, Allen Mouse Brain Atlas Internet. http://www.brain-map.org
  2. Berman A (1968) The brain stem of the cat: a cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, MadisonGoogle Scholar
  3. Berman A, Jones E (1982) The thalamus and basal telencephalon of the cat: a cytoarchitectonic atlas with stereotaxic coordinates. University of Wisconsin Press, MadisonGoogle Scholar
  4. Bertrand L, Nissanov J (2008) The neuroterrain 3D mouse brain atlas. Front Neuroinform 2:3.  https://doi.org/10.3389/neuro.11.003.2008 PubMedPubMedCentralGoogle Scholar
  5. Carson JP et al (2005) A digital atlas to characterize the mouse brain transcriptome. PLoS Comput Biol 1(4):e41. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1215388&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralGoogle Scholar
  6. Dorr AE et al (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice. NeuroImage 42(1):60–69. http://www.ncbi.nlm.nih.gov/pubmed/18502665 PubMedGoogle Scholar
  7. Hardman CD, Ashwell KWS (2012) Stereotaxic and chemoarchitectural atlas of the brain of the common marmoset (Callithrix jacchus). CRC Press, Boca RatonGoogle Scholar
  8. Hashikawa T, Nakatomi R, Iriki A (2015) Current models of the marmoset brain. Neurosci Res 93:116–127.  https://doi.org/10.1016/j.neures.2015.01.009 PubMedGoogle Scholar
  9. Hawrylycz M et al (2011) Digital atlasing and standardization in the mouse brain. PLoS Comput Biol 7(2):e1001065.  https://doi.org/10.1371/journal.pcbi.1001065 PubMedPubMedCentralGoogle Scholar
  10. Hikishima K et al (2011) Population-averaged standard template brain atlas for the common marmoset (Callithrix jacchus). NeuroImage 54(4):2741–2749.  https://doi.org/10.1016/j.neuroimage.2010.10.061 PubMedGoogle Scholar
  11. Hikishima K et al (2013) Atlas of the developing brain of the marmoset monkey constructed using magnetic resonance histology. Neuroscience 230:102–113.  https://doi.org/10.1016/j.neuroscience.2012.09.053 PubMedGoogle Scholar
  12. Hjornevik T et al (2007) Three-dimensional atlas system for mouse and rat brain imaging data. Front Neuroinform 1:4.  https://doi.org/10.3389/neuro.11.004.2007 PubMedPubMedCentralGoogle Scholar
  13. Jessberger S, Gage FH (2007) ZOOMING IN: a new high-resolution gene expression atlas of the brain. Mol Syst Biol 3:75. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1800354&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralGoogle Scholar
  14. Jones AR, Overly CC, Sunkin SM (2009) The Allen brain atlas: 5 years and beyond. Nat Rev Neurosci 10(11):821–828. http://www.ncbi.nlm.nih.gov/pubmed/19826436 PubMedGoogle Scholar
  15. Kumazawa-Manita N et al (2013) Three-dimensional reconstruction of brain structures of the rodent Octodon degus: a brain atlas constructed by combining histological and magnetic resonance images. Exp Brain Res 231(1):65–74.  https://doi.org/10.1007/s00221-013-3667-1 PubMedPubMedCentralGoogle Scholar
  16. Lipp HP (1980) A stereotaxic x-ray map of the hypothalamus of the marmoset monkey Callithrix jacchus. Exp Brain Res 38(2):189–195. http://www.ncbi.nlm.nih.gov/pubmed/6766871 PubMedGoogle Scholar
  17. Ma Y et al (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135(4):1203–1215. http://www.ncbi.nlm.nih.gov/pubmed/16165303 PubMedGoogle Scholar
  18. Martin RF, Bowden DM (1996) A stereotaxic template atlas of the macaque brain for digital imaging and quantitative neuroanatomy. NeuroImage 4(2):119–150.  https://doi.org/10.1006/nimg.1996.0036 PubMedGoogle Scholar
  19. Mikula S et al (2007) Internet-enabled high-resolution brain mapping and virtual microscopy. NeuroImage 35(1):9–15.  https://doi.org/10.1016/j.neuroimage.2006.11.053 PubMedPubMedCentralGoogle Scholar
  20. Moriya-Ito K et al (2015a) The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus). Neurosci Res 93:158–163. http://linkinghub.elsevier.com/retrieve/pii/S0168010214003241 PubMedGoogle Scholar
  21. Newman JD et al (2009) A combined histological and MRI brain atlas of the common marmoset monkey, Callithrix jacchus. Brain Res Rev 62(1):1–18.  https://doi.org/10.1016/j.brainresrev.2009.09.001 PubMedPubMedCentralGoogle Scholar
  22. Palazzi X, Bordier N (2008) The marmoset brain in stereotaxic coordinates. Springer, New YorkGoogle Scholar
  23. Paxinos G et al (2012) The marmoset brain in stereotaxic coordinates. Academic Press/Elsevier, AmsterdamGoogle Scholar
  24. Saavedra JP, Mazzuchelli AL (1969) A stereotaxic atlas of the brain of the marmoset (Hapale jacchus). J Hirnforsch 11(1):105–122. http://www.ncbi.nlm.nih.gov/pubmed/4188693 PubMedGoogle Scholar
  25. Saleem KS, Logothetis NK (2012) A combined MRI and histology. Atlas of the Rhesus Monkey brain in stereotaxic coordinates, 2nd edition with horizontal, coronal, and sagittal series. Academic Press/Elsevier, LondonGoogle Scholar
  26. Senoo A, Tokuno H, Watson C (2015) Mini-atlas of the marmoset brain. Neurosci Res 93:128–135.  https://doi.org/10.1016/j.neures.2014.12.014 PubMedGoogle Scholar
  27. Stephan H, Baron G, Schwerdtfeger W (1980) The brain of the common marmoset (Callithrix jacchus). A stereotaxic atlas. Springer, BerlinGoogle Scholar
  28. Tokuno H et al (2009b) Web-accessible digital brain atlas of the common marmoset (Callithrix jacchus). Neurosci Res 64(1):128–131.  https://doi.org/10.1016/j.neures.2009.02.003 PubMedGoogle Scholar
  29. Yuasa S, Nakamura K, Kohsaka S (2010) Stereotaxic atlas of the marmoset brain: with immunohistochemical architecture and MR images. National Institute of Neuroscience, TokyoGoogle Scholar

Selective References on Architectonic, Connectional and Functional Organizations of the New World Monkey Brain

  1. Aitkin LM, Kudo M, Irvine DR (1988) Connections of the primary auditory cortex in the common marmoset, Callithrix jacchus jacchus. J Comp Neurol 269(2):235–248.  https://doi.org/10.1002/cne.902690208 PubMedGoogle Scholar
  2. Allman JM, Kaas JH (1975) The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkey (Aotus trivirgatus). Brain Res 100(3):473–487. http://www.ncbi.nlm.nih.gov/pubmed/811327 PubMedGoogle Scholar
  3. Bakola S, Burman KJ, Rosa MGP (2015) The cortical motor system of the marmoset monkey (Callithrix jacchus). Neurosci Res 93:72–81. http://www.ncbi.nlm.nih.gov/pubmed/25498953 PubMedGoogle Scholar
  4. Baldauf ZB (2005) SMI-32 parcellates the visual cortical areas of the marmoset. Neurosci Lett 383(1-2):109–114.  https://doi.org/10.1016/j.neulet.2005.03.055 PubMedGoogle Scholar
  5. Blanks RH et al (1995) Projections of the lateral terminal accessory optic nucleus of the common marmoset (Callithrix jacchus). J Comp Neurol 354(4):511–532.  https://doi.org/10.1002/cne.903540404 PubMedGoogle Scholar
  6. Bourne JA, Rosa MGP (2003) Neurofilament protein expression in the geniculostriate pathway of a New World monkey (Callithrix jacchus). Exp Brain Res 150(1):19–24. http://www.ncbi.nlm.nih.gov/pubmed/12698212 PubMedGoogle Scholar
  7. Bourne JA, Rosa MGP (2006) Hierarchical development of the primate visual cortex, as revealed by neurofilament immunoreactivity: early maturation of the middle temporal area (MT). Cereb Cortex 16(3):405–414. http://www.ncbi.nlm.nih.gov/pubmed/15944371 PubMedGoogle Scholar
  8. Bourne JA et al (2007) Chemoarchitecture of the middle temporal visual area in the marmoset monkey (Callithrix jacchus): laminar distribution of calcium-binding proteins (calbindin, parvalbumin) and nonphosphorylated neurofilament. J Comp Neurol 500(5):832–849.  https://doi.org/10.1002/cne.21190 PubMedGoogle Scholar
  9. Brysch W et al (1990) The topology of the thalamo-cortical projections in the marmoset monkey (Callithrix jacchus). Exp Brain Res 81(1):1–17. http://www.ncbi.nlm.nih.gov/pubmed/2394218 PubMedGoogle Scholar
  10. Burish MJ, Stepniewska I, Kaas JH (2008) Microstimulation and architectonics of frontoparietal cortex in common marmosets (Callithrix jacchus). J Comp Neurol 507(2):1151–1168.  https://doi.org/10.1002/cne.21596 PubMedGoogle Scholar
  11. Burman KJ, Rosa MGP (2009) Architectural subdivisions of medial and orbital frontal cortices in the marmoset monkey (Callithrix jacchus). J Comp Neurol 514(1):11–29.  https://doi.org/10.1002/cne.21976 PubMedGoogle Scholar
  12. Burman KJ et al (2006) Cytoarchitectonic subdivisions of the dorsolateral frontal cortex of the marmoset monkey (Callithrix jacchus), and their projections to dorsal visual areas. J Comp Neurol 495(2):149–172.  https://doi.org/10.1002/cne.20837 PubMedGoogle Scholar
  13. Burman KJ et al (2008) Anatomical and physiological definition of the motor cortex of the marmoset monkey. J Comp Neurol 506(5):860–876.  https://doi.org/10.1002/cne.21580 PubMedGoogle Scholar
  14. Burman KJ et al (2011a) Subcortical projections to the frontal pole in the marmoset monkey. Eur J Neurosci 34(2):303–319.  https://doi.org/10.1111/j.1460-9568.2011.07744.x PubMedGoogle Scholar
  15. Burman KJ et al (2011b) Cortical input to the frontal pole of the marmoset monkey. Cereb Cortex 21(8):1712–1737.  https://doi.org/10.1093/cercor/bhq239 PubMedGoogle Scholar
  16. Burman KJ et al (2014a) Patterns of cortical input to the primary motor area in the marmoset monkey. J Comp Neurol 522(4):811–843.  https://doi.org/10.1002/cne.23447 PubMedGoogle Scholar
  17. Burman KJ et al (2014b) Patterns of afferent input to the caudal and rostral areas of the dorsal premotor cortex (6DC and 6DR) in the marmoset monkey. J Comp Neurol 522(16):3683–3716.  https://doi.org/10.1002/cne.23633 PubMedGoogle Scholar
  18. Burman KJ et al (2015) Cortical and thalamic projections to cytoarchitectural areas 6Va and 8C of the marmoset monkey: connectionally distinct subdivisions of the lateral premotor cortex. J Comp Neurol 523(8):1222–1247.  https://doi.org/10.1002/cne.23734 PubMedGoogle Scholar
  19. Cappe C, Barone P (2005) Heteromodal connections supporting multisensory integration at low levels of cortical processing in the monkey. Eur J Neurosci 22(11):2886–2902.  https://doi.org/10.1111/j.1460-9568.2005.04462.x PubMedGoogle Scholar
  20. Cavalcante JS et al (2011) 5-HT(1B) receptor in the suprachiasmatic nucleus of the common marmoset (Callithrix jacchus). Neurosci Lett 488(1):6–10. http://www.ncbi.nlm.nih.gov/pubmed/21055446 PubMedGoogle Scholar
  21. Chaplin TA et al (2013) A conserved pattern of differential expansion of cortical areas in simian primates. J Neurosci 33(38):15120–15125. http://www.ncbi.nlm.nih.gov/pubmed/24048842 PubMedGoogle Scholar
  22. Clarke RJ, Blanks RHI, Giolli RA (2003) Midbrain connections of the olivary pretectal nucleus in the marmoset (Callithrix jacchus): implications for the pupil light reflex pathway. Anat Embryol 207(2):149–155. http://www.ncbi.nlm.nih.gov/pubmed/14505052 PubMedGoogle Scholar
  23. Clark HF, Horst NK, Roberts AC (2015) Regional inactivations of primate ventral prefrontal cortex reveal two distinct mechanisms underlying negative bias in decision making. Proc Natl Acad Sci U S A 112(13):4176–4181. http://www.pnas.org/lookup/doi/10.1073/pnas.1422440112 Google Scholar
  24. Collins CE, Lyon DC, Kaas JH (2005) Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. Anat Rec A Discov Mol Cell Evol Biol 285(1):619–627.  https://doi.org/10.1002/ar.a.20207 PubMedGoogle Scholar
  25. de la Mothe LA et al (2006a) Cortical connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496(1):27–71.  https://doi.org/10.1002/cne.20923 PubMedGoogle Scholar
  26. de la Mothe LA et al (2006b) Thalamic connections of the auditory cortex in marmoset monkeys: core and medial belt regions. J Comp Neurol 496(1):72–96.  https://doi.org/10.1002/cne.20924 PubMedPubMedCentralGoogle Scholar
  27. de la Mothe LA et al (2012) Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec 295(5):822–836.  https://doi.org/10.1002/ar.22454 Google Scholar
  28. Dick A, Kaske A, Creutzfeldt OD (1991) Topographical and topological organization of the thalamocortical projection to the striate and prestriate cortex in the marmoset (Callithrix jacchus). Exp Brain Res 84(2):233–253. http://www.ncbi.nlm.nih.gov/pubmed/1712314 PubMedGoogle Scholar
  29. Everitt BJ et al (1988) Distribution and some projections of cholinergic neurons in the brain of the common marmoset, Callithrix jacchus. J Comp Neurol 271(4):533–558. http://www.ncbi.nlm.nih.gov/pubmed/2454972 PubMedGoogle Scholar
  30. Fang P-C, Jain N, Kaas JH (2002) Few intrinsic connections cross the hand-face border of area 3b of New World monkeys. J Comp Neurol 454(3):310–319.  https://doi.org/10.1002/cne.10433 PubMedGoogle Scholar
  31. Fine A et al (1997) Learning impairments following injection of a selective cholinergic immunotoxin, ME20.4 IgG-saporin, into the basal nucleus of Meynert in monkeys. Neuroscience 81(2):331–343. http://www.ncbi.nlm.nih.gov/pubmed/9300425 PubMedGoogle Scholar
  32. Fritsches KA, Rosa MG (1996) Visuotopic organisation of striate cortex in the marmoset monkey (Callithrix jacchus). J Comp Neurol 372(2):264–282. http://www.ncbi.nlm.nih.gov/pubmed/8863130 PubMedGoogle Scholar
  33. Gamberini M et al (2009) Cortical connections of the visuomotor parietooccipital area V6Ad of the macaque monkey. J Comp Neurol 513(6):622–642. http://www.ncbi.nlm.nih.gov/pubmed/19235224 PubMedGoogle Scholar
  34. Guldin WO, Mirring S, Grüsser OJ (1993) Connections from the neocortex to the vestibular brain stem nuclei in the common marmoset. Neuroreport 5(2):113–116. http://www.ncbi.nlm.nih.gov/pubmed/8110998 PubMedGoogle Scholar
  35. Hardman CD et al (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445(3):238–255. http://www.ncbi.nlm.nih.gov/pubmed/11920704 PubMedGoogle Scholar
  36. Höhl-Abrahão JC, Creutzfeldt OD (1991) Topographical mapping of the thalamocortical projections in rodents and comparison with that in primates. Exp Brain Res 87(2):283–294. http://www.ncbi.nlm.nih.gov/pubmed/1722758 PubMedGoogle Scholar
  37. Homman-Ludiye J, Bourne JA (2014) The guidance molecule semaphorin3A is differentially involved in the arealization of the mouse and primate neocortex. Cereb Cortex 24(11):2884–2898.  https://doi.org/10.1093/cercor/bht141 PubMedGoogle Scholar
  38. Hornung JP, Fritschy JM (1988) Serotoninergic system in the brainstem of the marmoset: a combined immunocytochemical and three-dimensional reconstruction study. J Comp Neurol 270(4):471–487.  https://doi.org/10.1002/cne.902700402 PubMedGoogle Scholar
  39. Huffman KJ, Krubitzer L (2001a) Thalamo-cortical connections of areas 3a and M1 in marmoset monkeys. J Comp Neurol 435(3):291–310. http://www.ncbi.nlm.nih.gov/pubmed/11406813 PubMedGoogle Scholar
  40. Huffman KJ, Krubitzer L (2001b) Area 3a: topographic organization and cortical connections in marmoset monkeys. Cereb Cortex 11(9):849–867. http://www.ncbi.nlm.nih.gov/pubmed/11532890 PubMedGoogle Scholar
  41. Hung C-C et al (2015a) Functional mapping of face-selective regions in the extrastriate visual cortex of the marmoset. J Neurosci 35(3):1160–1172.  https://doi.org/10.1523/JNEUROSCI.2659-14.2015 PubMedPubMedCentralGoogle Scholar
  42. Hung C-C et al (2015b) Functional MRI of visual responses in the awake, behaving marmoset. NeuroImage 120:1–11.  https://doi.org/10.1016/j.neuroimage.2015.06.090 PubMedPubMedCentralGoogle Scholar
  43. Jeffs J et al (2013) High-resolution mapping of anatomical connections in marmoset extrastriate cortex reveals a complete representation of the visual field bordering dorsal V2. Cereb Cortex 23(5):1126–1147.  https://doi.org/10.1093/cercor/bhs088 PubMedGoogle Scholar
  44. Jeffs J, Federer F, Angelucci A (2015) Corticocortical connection patterns reveal two distinct visual cortical areas bordering dorsal V2 in marmoset monkey. Vis Neurosci 32:E012.  https://doi.org/10.1017/S0952523815000097 PubMedPubMedCentralGoogle Scholar
  45. Kaas JH (2004) Evolution of somatosensory and motor cortex in primates. Anat Rec A Discov Mol Cell Evol Biol 281(1):1148–1156. http://www.ncbi.nlm.nih.gov/pubmed/15470673 PubMedGoogle Scholar
  46. Kaas JH, Morel A (1993) Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST. J Neurosci 13(2):534–546. http://www.ncbi.nlm.nih.gov/pubmed/8381166 PubMedGoogle Scholar
  47. Kaas JH et al (1978) Patterns of retinal terminations and laminar organization of the lateral geniculate nucleus of primates. J Comp Neurol 182(3):517–553.  https://doi.org/10.1002/cne.901820308 PubMedGoogle Scholar
  48. Kaas JH et al (2015) Resolving the organization of the territory of the third visual area: a new proposal. Vis Neurosci 32:E016. http://www.journals.cambridge.org/abstract_S0952523815000152 PubMedGoogle Scholar
  49. Karasawa N et al (2007) Tyrosine hydroxylase (TH)- and aromatic-L-amino acid decarboxylase (AADC)-immunoreactive neurons of the common marmoset (Callithrix jacchus) brain: an immunohistochemical analysis. Acta Histochem Cytochem 40(3):83–92. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1931487&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralGoogle Scholar
  50. Kaske A, Dick A, Creutzfeldt OD (1991) The local domain for divergence of subcortical afferents to the striate and extrastriate visual cortex in the common marmoset (Callithrix jacchus): a multiple labelling study. Exp Brain Res 84(2):254–265. http://www.ncbi.nlm.nih.gov/pubmed/1712315 PubMedGoogle Scholar
  51. Kondo T et al (2015) Histological and electrophysiological analysis of the corticospinal pathway to forelimb motoneurons in common marmosets. Neurosci Res 98:35–44.  https://doi.org/10.1016/j.neures.2015.05.001 PubMedGoogle Scholar
  52. Krubitzer LA, Kaas JH (1990) The organization and connections of somatosensory cortex in marmosets. J Neurosci 10(3):952–974. http://www.ncbi.nlm.nih.gov/pubmed/2108231 PubMedGoogle Scholar
  53. Krubitzer LA, Kaas JH (1992) The somatosensory thalamus of monkeys: cortical connections and a redefinition of nuclei in marmosets. J Comp Neurol 319(1):123–140.  https://doi.org/10.1002/cne.903190111 PubMedGoogle Scholar
  54. Kunz B, Spatz WB (1985) A callosal projection of area 17 upon the border region of area MT in the marmoset monkey, Callithrix jacchus. J Comp Neurol 239(4):413–419. http://www.ncbi.nlm.nih.gov/pubmed/3930580 PubMedGoogle Scholar
  55. Leichnetz GR, Astruc J (1975) Efferent connections of the orbitofrontal cortex in the marmoset (Saguinus oedipus). Brain Res 84(2):169–180.  https://doi.org/10.1016/0006-8993(75)90973-7 PubMedGoogle Scholar
  56. Lima RRM et al (2012) Retinal projections and neurochemical characterization of the pregeniculate nucleus of the common marmoset (Callithrix jacchus). J Chem Neuroanat 44(1):34–44.  https://doi.org/10.1016/j.jchemneu.2012.04.001 PubMedGoogle Scholar
  57. Lui LL, Rosa MGP (2015) Structure and function of the middle temporal visual area (MT) in the marmoset: comparisons with the macaque monkey. Neurosci Res 93:62–71.  https://doi.org/10.1016/j.neures.2014.09.012 PubMedGoogle Scholar
  58. Lyon DC, Kaas JH (2001) Connectional and architectonic evidence for dorsal and ventral V3, and dorsomedial area in marmoset monkeys. J Neurosci 21(1):249–261. http://www.ncbi.nlm.nih.gov/pubmed/11150342 PubMedGoogle Scholar
  59. Lyon DC, Kaas JH (2002) Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of New World monkeys. J Comp Neurol 449(3):281–297. http://www.ncbi.nlm.nih.gov/pubmed/12115680 PubMedGoogle Scholar
  60. Markowitsch HJ et al (1985) Cortical and subcortical afferent connections of the primate’s temporal pole: a study of rhesus monkeys, squirrel monkeys, and marmosets. J Comp Neurol 242(3):425–458.  https://doi.org/10.1002/cne.902420310 PubMedGoogle Scholar
  61. Mashiko H et al (2012) Comparative anatomy of marmoset and mouse cortex from genomic expression. J Neurosci 32(15):5039–5053.  https://doi.org/10.1523/JNEUROSCI.4788-11.2012 PubMedGoogle Scholar
  62. Matsunaga E et al (2013) Differential cadherin expression in the developing postnatal telencephalon of a New World monkey. J Comp Neurol 521(17):4027–4060. http://www.ncbi.nlm.nih.gov/pubmed/23784870 PubMedGoogle Scholar
  63. Matsunaga E et al (2015a) Comparative analysis of developmentally regulated expressions of Gadd45a, Gadd45b, and Gadd45g in the mouse and marmoset cerebral cortex. Neuroscience 284:566–580.  https://doi.org/10.1016/j.neuroscience.2014.10.032 PubMedGoogle Scholar
  64. Matsunaga E et al (2015b) Periostin, a neurite outgrowth-promoting factor, is expressed at high levels in the primate cerebral cortex. Dev Growth Differ 57(3):200–208.  https://doi.org/10.1111/dgd.12194 PubMedGoogle Scholar
  65. Moriya-Ito K et al (2015) The olfactory bulb and the number of its glomeruli in the common marmoset (Callithrix jacchus). Neurosci Res 93:158–163. http://linkinghub.elsevier.com/retrieve/pii/S0168010214003241 PubMedGoogle Scholar
  66. Palmer SM, Rosa MGP (2006a) Quantitative analysis of the corticocortical projections to the middle temporal area in the marmoset monkey: evolutionary and functional implications. Cereb Cortex 16(9):1361–1375.  https://doi.org/10.1093/cercor/bhj078 PubMedGoogle Scholar
  67. Palmer SM, Rosa MGP (2006b) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24(8):2389–2405.  https://doi.org/10.1111/j.1460-9568.2006.05113.x PubMedGoogle Scholar
  68. Percival KA et al (2014) Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset. J Neurosci 34(11):3821–3825.  https://doi.org/10.1523/JNEUROSCI.4491-13.2014 PubMedGoogle Scholar
  69. Qi H-X, Lyon DC, Kaas JH (2002) Cortical and thalamic connections of the parietal ventral somatosensory area in marmoset monkeys (Callithrix jacchus). J Comp Neurol 443(2):168–182. http://www.ncbi.nlm.nih.gov/pubmed/11793354 PubMedGoogle Scholar
  70. Reser DH et al (2009) Connections of the marmoset rostrotemporal auditory area: express pathways for analysis of affective content in hearing. Eur J Neurosci 30(4):578–592.  https://doi.org/10.1111/j.1460-9568.2009.06846.x PubMedGoogle Scholar
  71. Reser DH et al (2013) Contrasting patterns of cortical input to architectural subdivisions of the area 8 complex: a retrograde tracing study in marmoset monkeys. Cereb Cortex 23(8):1901–1922.  https://doi.org/10.1093/cercor/bhs177 PubMedGoogle Scholar
  72. Roberts AC et al (2007) Forebrain connectivity of the prefrontal cortex in the marmoset monkey (Callithrix jacchus): an anterograde and retrograde tract-tracing study. J Comp Neurol 502(1):86–112.  https://doi.org/10.1002/cne.21300 PubMedGoogle Scholar
  73. Rosa MG, Elston GN (1998) Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): middle temporal area, middle temporal crescent, and surrounding cortex. J Comp Neurol 393(4):505–527. http://www.ncbi.nlm.nih.gov/pubmed/9550155 PubMedGoogle Scholar
  74. Rosa MGP, Manger PR (2005) Clarifying homologies in the mammalian cerebral cortex: the case of the third visual area (V3). Clin Exp Pharmacol Physiol 32(5–6):327–339.  https://doi.org/10.1111/j.1440-1681.2005.04192.x PubMedGoogle Scholar
  75. Rosa MG, Schmid LM (1995) Visual areas in the dorsal and medial extrastriate cortices of the marmoset. J Comp Neurol 359(2):272–299.  https://doi.org/10.1002/cne.903590207 PubMedGoogle Scholar
  76. Rosa MG, Tweedale R (2000) Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey. J Comp Neurol 422(4):621–651. http://www.ncbi.nlm.nih.gov/pubmed/10861530 PubMedGoogle Scholar
  77. Rosa MG, Tweedale R (2001) The dorsomedial visual areas in New World and Old World monkeys: homology and function. Eur J Neurosci 13(3):421–427. http://www.ncbi.nlm.nih.gov/pubmed/11168549 PubMedGoogle Scholar
  78. Rosa MGP, Tweedale R (2005) Brain maps, great and small: lessons from comparative studies of primate visual cortical organization. Philos Trans R Soc Lond Ser B Biol Sci 360(1456):665–691.  https://doi.org/10.1098/rstb.2005.1626 Google Scholar
  79. Rosa MG, Fritsches KA, Elston GN (1997) The second visual area in the marmoset monkey: visuotopic organisation, magnification factors, architectonical boundaries, and modularity. J Comp Neurol 387(4):547–567. http://www.ncbi.nlm.nih.gov/pubmed/9373013 PubMedGoogle Scholar
  80. Rosa MG, Tweedale R, Elston GN (2000) Visual responses of neurons in the middle temporal area of new world monkeys after lesions of striate cortex. J Neurosci 20(14):5552–5563. http://www.ncbi.nlm.nih.gov/pubmed/10884339 PubMedGoogle Scholar
  81. Rosa MGP et al (2005) Resolving the organization of the New World monkey third visual complex: the dorsal extrastriate cortex of the marmoset (Callithrix jacchus). J Comp Neurol 483(2):164–191.  https://doi.org/10.1002/cne.20412 PubMedGoogle Scholar
  82. Rosa MGP et al (2009) Connections of the dorsomedial visual area: pathways for early integration of dorsal and ventral streams in extrastriate cortex. J Neurosci 29(14):4548–4563.  https://doi.org/10.1523/JNEUROSCI.0529-09.2009 PubMedGoogle Scholar
  83. Rosa MGP et al (2013) The case for a dorsomedial area in the primate “third-tier” visual cortex. Proc Biol Sci 280(1750):20121372.; ; discussion 20121994.  https://doi.org/10.1098/rspb.2012.1372 PubMedPubMedCentralGoogle Scholar
  84. Schofield SP, Dixson AF (1982) Distribution of catecholamine and indoleamine neurons in the brain of the common marmoset (Callithrix jacchus). J Anat 134(Pt 2):315–338. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1167920&tool=pmcentrez&rendertype=abstract PubMedPubMedCentralGoogle Scholar
  85. Schwerdtfeger WK (1979) Direct efferent and afferent connections of the hippocampus with the neocortex in the marmoset monkey. Am J Anat 156(1):77–82.  https://doi.org/10.1002/aja.1001560107 PubMedGoogle Scholar
  86. Solomon SG, Rosa MGP (2014) A simpler primate brain: the visual system of the marmoset monkey. Front Neural Circuits 8:96.  https://doi.org/10.3389/fncir.2014.00096 PubMedPubMedCentralGoogle Scholar
  87. Spatz WB (1975a) An efferent connection of the solitary cells of Meynert. A study with horseradish peroxidase in the marmoset Callithrix. Brain Res 92(3):450–455. http://www.ncbi.nlm.nih.gov/pubmed/809097 PubMedGoogle Scholar
  88. Spatz WB (1975b) Thalamic and other subcortical projections to area MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus. Brain Res 99(1):129–134. http://www.ncbi.nlm.nih.gov/pubmed/810924 PubMedGoogle Scholar
  89. Spatz WB (1977) Topographically organized reciprocal connections between areas 17 and MT (visual area of superior temporal sulcus) in the marmoset Callithrix jacchus. Exp Brain Res 27(5):559–572. http://www.ncbi.nlm.nih.gov/pubmed/404175 PubMedGoogle Scholar
  90. Spatz WB (1978) The retino-geniculo-cortical pathway in Callithrix. I. Intraspecific variations in the lamination pattern of the lateral geniculate nucleus. Exp Brain Res 33(3–4):551–563. http://www.ncbi.nlm.nih.gov/pubmed/103740 PubMedGoogle Scholar
  91. Spatz WB (1979) The retino-geniculo-cortical pathway in Callithrix. II. The geniculo-cortical projection. Exp Brain Res 410:401–410. http://www.ncbi.nlm.nih.gov/pubmed/113233 Google Scholar
  92. Spatz WB, Erdmann G (1974) Striate cortex projections to the lateral geniculate and other thalamic nuclei: a study using degeneration and autoradiographic tracing methods in the marmoset Callithrix. Brain Res 82(1):91–108. http://www.ncbi.nlm.nih.gov/pubmed/4140013 PubMedGoogle Scholar
  93. Spatz WB, Tigges J (1972) Experimental-anatomical studies on the “middle temporal visual area (MT)” in primates. I. Efferent cortico-cortical connections in the marmoset Callithrix jacchus. J Comp Neurol 146(4):451–464.  https://doi.org/10.1002/cne.901460403 PubMedGoogle Scholar
  94. Spatz WB, Tigges J (1973) Studies on the visual are MT in primates. II. Projection fibers to subcortical structures. Brain Res 61:374–378.  https://doi.org/10.1016/0006-8993(73)90541-6 PubMedGoogle Scholar
  95. Spatz WB, Kunz B, Steffen H (1987) A new heterotopic callosal projection of primary visual cortex in the monkey, Callithrix jacchus. Brain Res 403(1):158–161. http://www.ncbi.nlm.nih.gov/pubmed/3103864 PubMedGoogle Scholar
  96. Stepniewska I, Ql HX, Kaas JH (2000) Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Vis Neurosci 17(4):529–549. http://www.ncbi.nlm.nih.gov/pubmed/11016573 PubMedGoogle Scholar
  97. Valverde Salzmann MF et al (2012) Color blobs in cortical areas V1 and V2 of the New World Monkey Callithrix jacchus, revealed by non-differential optical imaging. J Neurosci 32(23):7881–7894. http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.4832-11.2012 PubMedGoogle Scholar
  98. vogt Weisenhorn DM, Illing RB, Spatz WB (1995) Morphology and connections of neurons in area 17 projecting to the extrastriate areas MT and 19DM and to the superior colliculus in the monkey Callithrix jacchus. J Comp Neurol 362(2):233–255. http://www.ncbi.nlm.nih.gov/pubmed/8576436 PubMedGoogle Scholar
  99. Wallace DJ, Fitzpatrick D, Kerr JND (2016) Primate thalamus: more than meets an eye. Curr Biol 26(2):R60–R61. http://linkinghub.elsevier.com/retrieve/pii/S0960982215014190 PubMedGoogle Scholar
  100. Wang Z et al (1997) Vasopressin in the forebrain of common marmosets (Callithrix jacchus): studies with in situ hybridization, immunocytochemistry and receptor autoradiography. Brain Res 768(1–2):147–156. http://www.ncbi.nlm.nih.gov/pubmed/9369311 PubMedGoogle Scholar
  101. Watson C, Lind CRP, Thomas MG (2014) The anatomy of the caudal zona incerta in rodents and primates. J Anat 224(2):95–107.  https://doi.org/10.1111/joa.12132 PubMedGoogle Scholar
  102. Weber JT, Giolli RA (1986) The medial terminal nucleus of the monkey: evidence for a “complete” accessory optic system. Brain Res 365(1):164–168. http://www.ncbi.nlm.nih.gov/pubmed/3947982 PubMedGoogle Scholar
  103. Weller RE, Steele GE, Kaas JH (2002) Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys. J Comp Neurol 450(3):215–240.  https://doi.org/10.1002/cne.10298 PubMedGoogle Scholar
  104. Yu H-H, Chaplin TA, Rosa MGP (2015) Representation of central and peripheral vision in the primate cerebral cortex: insights from studies of the marmoset brain. Neurosci Res 93:47–61.  https://doi.org/10.1016/j.neures.2014.09.004 PubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Tsutomu Hashikawa
    • 1
  • Atsushi Iriki
    • 2
    Email author
  • Hirotaka James Okano
    • 3
  • Erika Sasaki
    • 4
  • Hideyuki Okano
    • 5
  1. 1.Laboratory for Symbolic Cognitive DevelopmentRIKEN Brain Science InstituteSaitamaJapan
  2. 2.Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Biosystems Dynamics Research and Brain Science InstituteWako-shiJapan
  3. 3.Division of Regenerative MedicineJikei University School of MedicineTokyoJapan
  4. 4.Department of Applied Developmental BiologyCentral Institute for Experimental AnimalsKawasakiJapan
  5. 5.Department of PhysiologyKeio University School of MedicineShinjuku-kuJapan

Personalised recommendations