Seasonal Regulation of Reproduction in Vertebrates: Special Focus on Avian Strategy

  • Ai Shinomiya
  • Takashi YoshimuraEmail author
Part of the Diversity and Commonality in Animals book series (DCA)


Temperate zones are characterized by seasonal changes in the environment; therefore, reproduction in most temperate animal species is restricted to a specific season to maximize the survival of their offspring. Among vertebrates, birds have evolved highly sophisticated mechanisms for seasonal reproduction to accommodate their adaptation for flight. For example, the mass of Japanese quail (Coturnix japonica) testes increases more than 100-fold within a few weeks. Under short-day conditions, gonadal development is suppressed and testes retain their immature size. However, when quail are transferred to long-day conditions, germ cell differentiation begins immediately. Conversely, when they are transferred to winter conditions (short day and low temperature), arrested meiosis and germ cell apoptosis cause rapid testicular regression. Recent molecular analysis revealed the signal transduction pathway regulating seasonal reproduction. Comparative analysis of seasonal reproduction in various species also revealed both the similarity (i.e., signal transduction machineries) and diversity (i.e., responsible cells or organs) of these mechanisms among various vertebrate species.


Seasonal reproduction Photoperiodism Thyroid hormone Thyrotropin 



This work was supported by Funding Program for Next Generation World Leading Researchers (NEXT Program) initiated by the Council for Science and Technology Policy (CSTP)(LS055) and JSPS KAKENHI Grant Number 26000013.


  1. Abe T, Suzuki T, Unno M et al (2002) Thyroid hormone transporters: recent advances. Trend Endocrinol Metab 13:215–220. CrossRefGoogle Scholar
  2. Barrett P, Ebling FJ, Schuhler S et al (2007) Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148:3608–3617. CrossRefPubMedGoogle Scholar
  3. Benoit J (1935) Le role des yeux dans l’action stimulante de la lumiere sure le developpement testiulaire chez le canard. C R Soc Biol (Paris) 118:669–671Google Scholar
  4. Bernal J (2002) Action of thyroid hormone in brain. J Endocrinol Investig 25:268–288. CrossRefGoogle Scholar
  5. Borg B (2010) Photoperiodism in fishes. In: Nelson RJ, Denlinger DL, Somers DE (eds) Photoperiodism: the biological calendar. Oxford University Press, New York, pp 371–398Google Scholar
  6. Brainard GC, Vaughan MK, Reiter RJ (1986) Effect of light irradiance and wavelength on the Syrian hamster reproductive system. Endocrinology 119:648–654. CrossRefPubMedGoogle Scholar
  7. Chaurasia SS, Rollag MD, Jiang G et al (2005) Molecular cloning, localization and circadian expression of chicken melanopsin (Opn4): differential regulation of expression in pineal and retinal cell types. J Neurochem 92:158–170. CrossRefPubMedGoogle Scholar
  8. Clarke IJ, Sari IP, Qi Y et al (2008) Potent action of RFamide-related peptide-3 on pituitary gonadotropes indicative of a hypophysiotropic role in the negative regulation of gonadotropin secretion. Endocrinology 149:5811–5821. CrossRefPubMedGoogle Scholar
  9. Clements MK, McDonald TP, Wang R et al (2001) FMRFamide-related neuropeptides are agonists of the orphan G-protein-coupled receptor GPR54. Biochem Biophys Res Commun 284:1189–1193. CrossRefPubMedGoogle Scholar
  10. Collins S (1685) A system of anatomy, treating the body of man, beasts, birds, fish, insects and plants. Thomas Newcomb, LondonGoogle Scholar
  11. Dardente H, Klosen P, Pévet P et al (2003) MT1 melatonin receptor mRNA expressing cells in the pars tuberalis of the European hamster: effect of photoperiod. J Neuroendocrinol 15:778–786. CrossRefPubMedGoogle Scholar
  12. Dawson A, King VM, Bentley GE et al (2001) Photoperiodic control of seasonality in birds. J Biol Rhythm 16:365–380. CrossRefGoogle Scholar
  13. Follett BK, Maung SL (1978) Rate of testicular maturation, in relation to gonadotrophin and testosterone levels, in quail exposed to various artificial photoperiods and to natural daylengths. J Endocrinol 78:267–280. CrossRefPubMedGoogle Scholar
  14. Follett BK, King VM, Meddle SL (1998) Rhythms and photoperiodism in birds. In: Lumsden PJ, Miller AJ (eds) Biological rhythms and photoperiodism in plants. Biostatistics Scientific, Oxford, pp 231–242Google Scholar
  15. Foster RG, Follett BK (1985) The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail. J Comp Physiol A 157:519–528. CrossRefGoogle Scholar
  16. Freeman DA, Teubner BJ, Smith CD et al (2007) Exogenous T3 mimics long day lengths in Siberian hamsters. Am J Physiol Regul Integr Comp Physiol 292:2368–2372. CrossRefGoogle Scholar
  17. Garg SK (1989) Effect of pineal ectomy, eye enucleation, and melatonin treatment on ovarian activity and vitellogenin levels in the catfish exposed to short photoperiod or long photoperiod. J Pineal Res 7:91–104. CrossRefPubMedGoogle Scholar
  18. Garner WW, Allard HA (1920) Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants. J Agric Res 18:553–606Google Scholar
  19. Hagenbuch B, Meier PJ (2004) Organic anion transporting polypeptides of the OATP/SLC21 family: phylogenetic classification as OATP/SLCO superfamily, new nomenclature and molecular/functional properties. Eur J Phys 447:653–665. CrossRefGoogle Scholar
  20. Hahn TP, MacDougall-Shackleton SA (2008) Adaptive specialization, conditional plasticity and phylogenetic history in the reproductive cue response systems of birds. Phil Trans R Soc B 363:267–286. CrossRefPubMedGoogle Scholar
  21. Halford S, Pires SS, Turton M et al (2009) VA opsin-based photoreceptors in the hypothalamus of birds. Curr Biol 19:1396–1402. CrossRefPubMedGoogle Scholar
  22. Hanon EA, Lincoln GA, Fustin JM et al (2008) Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18:1147–1152. CrossRefPubMedGoogle Scholar
  23. Hartwig HG, van Veen T (1979) Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. J Comp Physiol 130:277–282. CrossRefGoogle Scholar
  24. Henson JR, Carter SN, Freeman DA (2013) Exogenous T3 elicits long day-like alterations in testis size and the RFamides Kisspeptin and gonadotropin-inhibitory hormone in short-day Siberian hamsters. J Biol Rhythm 28:193–200. CrossRefGoogle Scholar
  25. Herwig A, Wilson D, Logie TJ et al (2009) Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster. Am J Physiol Regul Integr Comp Physiol 296:R1307–R1315. CrossRefPubMedGoogle Scholar
  26. Homma K, Ohta M, Sakakibara Y (1979) Photoinducible phase of the Japanese quail detected by direct stimulation of the brain. In: Suda M, Hayaishi O, Nakagawa H (eds) Biological rhythms and their central mechanism. Elsevier, Amsterdam, pp 85–94Google Scholar
  27. Ikegami K, Liao XH, Hoshino Y et al (2014) Tissue-specific posttranslational modification allows functional targeting of thyrotropin. Cell Rep 9:801–810. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Ikegami K, Atsumi Y, Yorinaga E et al (2015) Low temperature-induced circulating triiodothyronine accelerates seasonal testicular regression. Endocrinology 156:647–659. CrossRefPubMedGoogle Scholar
  29. Jansen WF, Burger EH, Zandbergen MA (1982) Subcellular localization of calcium in the coronet cells and tanycytes of the saccus vasculosus of the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 224:169–180. CrossRefPubMedGoogle Scholar
  30. Jansen HT, Cutter C, Hardy S et al (2003) Seasonal plasticity within the gonadotropin-releasing hormone (GnRH) system of the ewe: Changes in identified GnRH inputs and glial association. Endocrinology 144:3663–3676. CrossRefPubMedGoogle Scholar
  31. Juss TS, Meddle SL, Servant RS et al (1993) Melatonin and photoperiodic time measurement in Japanese quail (Coturnix coturnix japonica). Proc R Soc Lond B Biol Sci 254:21–28. CrossRefGoogle Scholar
  32. Klosen P, Bienvenu C, Demarteau O et al (2002) The mt1 Melatonin receptor and RORb receptor are co-localized in specific TSH-immunoreactive cells in the pars tuberalis of the rat pituitary. J Histochem Cytochem 50:1647–1657. CrossRefPubMedGoogle Scholar
  33. Klosen P, Sébert ME, Rasri K et al (2013) TSH restores a summer phenotype in photoinhibited mammals via the RF-amides RFRP3 and kisspeptin. FASEB J 27:2677–2686. CrossRefPubMedGoogle Scholar
  34. Koger CS, Teh SJ, Hinton DE (1999) Variations of light and temperature regimes and resulting effects on reproductive parameters in medaka (Oryzias latipes). Biol Reprod 61:1287–1293. CrossRefPubMedGoogle Scholar
  35. Kotani M, Detheux M, Vandenbogaerde A et al (2001) The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem 276:34631–34636. CrossRefPubMedGoogle Scholar
  36. Lees AD (1981) Action spectra for the photoperiodic control of polymorphism in the aphid Megoura viciae. J Insect Physiol 27:761–771CrossRefGoogle Scholar
  37. Lin M, Jones RC, Blackshaw AW (1990) The cycle of the seminiferous epithelium in the Japanese quail (Coturnix coturnix japonica) and estimation of its duration. J Reprod Fertil 88:481–490CrossRefPubMedGoogle Scholar
  38. Marin RH, Satterlee DG (2004) Cloacal gland and testes development in male Japanese quail selected for divergent adrenocortical responsiveness. Poult Sci 83:1028–1034. CrossRefPubMedGoogle Scholar
  39. Masuda T, Iigo M, Aida K (2005) Existence of an extra-retinal and extra-pineal photoreceptive organ that regulates photoperiodism in gonadal development of an Osmeridteleost, ayu (Plecoglossusaltivelis). Comp Biochem Physiol A Mol Integr Physiol 140:414–422. CrossRefPubMedGoogle Scholar
  40. Meddle SL, Follett BK (1997) Photoperiodically driven changes in Fos expression within the basal tuberal hypothalamus and median eminence of Japanese quail. J Neurosci 17:8909–8918CrossRefPubMedGoogle Scholar
  41. Menaker M, Roberts R, Elliott J et al (1970) Extraretinal light perception in the sparrow. III. The eyes do not participate in photoperiodic photoreception. Proc Natl Acad Sci U S A 67:320–325. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Moenter SM, Woodfill CJ, Karsch FJ (1991) Role of the thyroid gland in seasonal reproduction: thyroidectomy blocks seasonal suppression of reproductive neuroendocrine activity in ewes. Endocrinology 128:1337–1344. CrossRefPubMedGoogle Scholar
  43. Muir AI, Chamberlain L, Elshourbagy NA et al (2001) AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem 276:28969–28975. CrossRefPubMedGoogle Scholar
  44. Nakane Y, Yoshimura T (2014) Universality and diversity in the signal transduction pathway that regulates seasonal reproduction in vertebrates. Front Neurosci 8:115. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nakane Y, Ikegami K, Ono H et al (2010) A mammalian neural tissue opsin (Opsin 5) is a deep brain photoreceptor in birds. Proc Natl Acad Sci U S A 107:15264–15268. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nakane Y, Ikegami K, Iigo M et al (2013) The saccus vasculosus of fish is a sensor of seasonal changes in day length. Nat Commun 4:2108. CrossRefPubMedGoogle Scholar
  47. Nakane Y, Shimmura T, Abe H et al (2014) Intrinsic photosensitivity of a deep brain photoreceptor. Curr Biol 24:R596–R597. CrossRefPubMedGoogle Scholar
  48. Nakao N, Takagi T, Iigo M et al (2006) Possible involvement of organic anion transporting polypeptide 1c1 in the photoperiodic response of gonads in birds. Endocrinology 147:1067–1073. CrossRefPubMedGoogle Scholar
  49. Nakao N, Ono H, Yamamura T et al (2008) Thyrotrophin in the pars tuberalis triggers photoperiodic response. Nature 452:317–322. CrossRefPubMedGoogle Scholar
  50. Nandi S, Banerjee PP, Zirkin BR (1999) Germ cell apoptosis in the testes of Sprague Dawley rats following testosterone withdrawal by ethane 1,2-dimethanesulfonate administration: relationship to Fas? Biol Reprod 61:70–75. CrossRefPubMedGoogle Scholar
  51. Nicholls TJ, Follett BK, Robinson JE (1983) A photoperiodic response in gonadectomized Japanese quail exposed to a single long day. J Endocrinol 97:121–126. CrossRefPubMedGoogle Scholar
  52. Nicholls TJ, Follett BK, Goldsmith AR et al (1988) Possible homologies between photorefractoriness in sheep and birds: the effect of thyroidectomy on the length of the ewe’s breeding season. Reprod Nutr:375–385. CrossRefGoogle Scholar
  53. Nishikawa K, Hirashima T, Suzuki S et al (1979) Changes in circulating L-thyroxineand L-triiodothyronine of the masu salmon, Oncorhynchus masou accompanying the smoltification, measured by radioimmunoassay. Endocrinol Jpn 26:731–735. CrossRefPubMedGoogle Scholar
  54. Ohtaki T, Shintani Y, Honda S et al (2001) Metastasis suppressor gene KiSS-1encodes peptide ligand of a G-protein-coupled receptor. Nature 411:613–617. CrossRefPubMedGoogle Scholar
  55. Oishi T, Ohashi K (1993) Effects of wavelengths of light on the photoperiodic gonadal response of blinded-pinealectomized Japanese quail. Zool Sci 10:757–762Google Scholar
  56. Ono H, Hoshino Y, Yasuo S et al (2008) Involvement of thyrotropin in photoperiodic signal transduction in mice. Proc Natl Acad Sci U S A 105:18238–18242. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Ono H, Nakao N, Yamamura T et al (2009) Red jungle fowl (Gallus gallus) as a model for studying the molecular mechanism of seasonal reproduction. Anim Sci J 80:328–332. CrossRefPubMedGoogle Scholar
  58. Perfito N, Jeong SY, Silverin B et al (2012) Anticipating spring: wild populations of great tits (Parus major) differ in expression of key genes for photoperiodic time measurement. PLoS One 7:e34997. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Prevot V, Croix D, Bouret S et al (1999) Definitive evidence for the existence of morphological plasticity in the external zone of the median eminence during the rat estrous cycle: implication of neuro-glio-endothelial interactions in gonadotropin-releasing hormone release. Neuroscience 94:809–819. CrossRefPubMedGoogle Scholar
  60. Reiter RJ (1980) The pineal and its hormones in the control of reproduction in mammals. Endocr Rev 1:109–131CrossRefPubMedGoogle Scholar
  61. Reppert SM, Weaver DR, Ebisawa T (1994) Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron 13:1177–1185. CrossRefPubMedGoogle Scholar
  62. Revel FG, Saboureau M, Pévet P et al (2006) Melatonin regulates type 2 deiodinase gene expression in the Syrian hamster. Endocrinology 147:4680–4687. CrossRefPubMedGoogle Scholar
  63. Revel FG, Saboureau M, Pévet P et al (2008) RFamide-related peptide gene is a melatonin-driven photoperiodic gene. Endocrinology 149:902–912. CrossRefPubMedGoogle Scholar
  64. Robertson OH (1949) Production of the silvery smolt stage in rainbow trout by intramuscular injection of mammalian thyroid extract and thyrotropic hormone. J Exp Zool 110:337–355. CrossRefPubMedGoogle Scholar
  65. Schuster C, Gauer F, Guerrero H et al (2000) Photic regulation of mt1 melatonin receptors in the Siberian hamster pars tuberalis and suprachiasmatic nuclei: involvement of the circadian clock and intergeniculate leaflet. J Neuroendocrinol 12:207–216. CrossRefPubMedGoogle Scholar
  66. Sharp PJ, Follett BK (1969) The effect of hypothalamic lesions on gonadotrophin release in Japanese quail (Coturnix coturnix japonica). Neuroendocrinology 5:205–218. CrossRefPubMedGoogle Scholar
  67. Shinomiya A, Shimmura T, Nishiwaki-Ohkawa T et al (2014) Regulation of seasonal reproduction by hypothalamic activation of thyroid hormone. Front Endocrinol (Lausanne) 5:12. CrossRefGoogle Scholar
  68. Silver R, Witkovsky P, Horvath P et al (1988) Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell Tissue Res 253:189–198. CrossRefPubMedGoogle Scholar
  69. Siopes TD, Wilson WO (1974) Extraocular modification of photoreception in intact and pinealectomized coturnix. Poult Sci 53:2035–2041. CrossRefPubMedGoogle Scholar
  70. Song CK, Bartness TJ (2001) CNS sympathetic outflow neurons to white fat that express MEL receptors may mediate seasonal adiposity. Am J Physiol Regul Integr Comp Physiol 281:R666–R672CrossRefPubMedGoogle Scholar
  71. Stevenson TJ, Ball GF (2012) Disruption of neuropsin mRNA expression via RNA interference facilitates the photoinduced increase in thyrotropin-stimulating subunit β in birds. Eur J Neurosci 36:2859–2865. CrossRefPubMedGoogle Scholar
  72. Sueiro C, Carrera I, Ferreiro S et al (2007) New insights on saccus vasculosus evolution: a developmental and immunohistochemical study in elasmobranchs. Brain Behav Evol 70:187–204. CrossRefPubMedGoogle Scholar
  73. Szkudlinski MW, Fremont V, Ronin C et al (2002) Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 82:473–502. CrossRefPubMedGoogle Scholar
  74. Urasaki H (1976) The role of pineal and eyes in the photoperiodic effect on the gonad of the medaka, Oryzias latipes. Chronobiologia 3:228–234PubMedGoogle Scholar
  75. Vigh B, Vigh-Teichmann I (1998) Actual problems of the cerebrospinal fluid-contacting neurons. Microsc Res Tech 41:57–83. CrossRefPubMedGoogle Scholar
  76. Vigh-Teichmann I, Röhlich P, Vigh B et al (1980) Comparison of the pineal complex, retina and cerebrospinal fluid contacting neurons by immunocytochemical antirhodopsin reaction. Z Mikrosk Anat Forsch 94:623–640PubMedGoogle Scholar
  77. von Frisch K (1911) Beitrage zur physiologie der pigmentzellen in der fischhaut. Pflü Arch Gesammte Physiol Menschen Tiere 138:319–387. CrossRefGoogle Scholar
  78. Wada Y, Okano T, Adachi A et al (1998) Identification of rhodopsin in the pigeon deep brain. FEBS Lett 424:53–56. CrossRefPubMedGoogle Scholar
  79. Watanabe M, Yasuo S, Watanabe T et al (2004) Photoperiodic regulation of type 2 deiodinase gene in Djungarian hamster: possible homologies between avian and mammalian photoperiodic regulation of reproduction. Endocrinology 145:1546–1549. CrossRefPubMedGoogle Scholar
  80. Watanabe T, Yamamura T, Watanabe M et al (2007) Hypothalamic expression of thyroid hormone-activating and – inactivating enzyme genes in relation to photorefractoriness in birds and mammals. Am J Physiol Regul Integr Comp Physiol 292:568–572. CrossRefGoogle Scholar
  81. Williams LM, Morgan PJ (1988) Demonstration of melatonin-binding sites on the pars tuberalis of the rat. J Endocrinol 119:1–3. CrossRefGoogle Scholar
  82. Wittkowski W, Bergmann M, Hoffmann K et al (1988) Photoperiod-dependent changes in TSH-like immunoreactivity of cells in the hypophysial pars tuberalis of the Djungarian hamster, Phodopus sungorus. Cell Tissue Res 251:183–187. CrossRefPubMedGoogle Scholar
  83. Yamamura T, Hirunagi K, Ebihara S et al (2004) Seasonal morphological changes in the neuro-glial interaction between gonadotropin-releasing hormone nerve terminals and glial endfeet in Japanese quail. Endocrinology 145:4264–4267. CrossRefPubMedGoogle Scholar
  84. Yamashita T, Ohuchi H, Tomonari S et al (2010) Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc Natl Acad Sci U S A 107:22084–22089. CrossRefPubMedPubMedCentralGoogle Scholar
  85. Yamazaki S, Goto M, Menaker M (1999) No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J Biol Rhythm 14:197–201. CrossRefGoogle Scholar
  86. Yasuo S, Watanabe M, Nakao N et al (2005) The reciprocal switching of two thyroid hormone-activating and –inactivating enzyme genes is involved in the photoperiodic gonadal response of Japanese quail. Endocrinology 146:2551–2554. CrossRefPubMedGoogle Scholar
  87. Yasuo S, Nakao N, Ohkura S et al (2006) Long-day suppressed expression of type 2 deiodinase gene in the mediobasal hypothalamus of the Saanen goat, a short-day breeder: implication for seasonal window of thyroid hormone action on reproductive neuroendocrine axis. Endocrinology 147:432–440. CrossRefPubMedGoogle Scholar
  88. Yasuo S, Yoshimura T, Ebihara S et al (2007a) Temporal dynamics of type 2 deiodinase expression after melatonin injections in Syrian hamsters. Endocrinology 148:4385–4392. CrossRefPubMedGoogle Scholar
  89. Yasuo S, Watanabe M, Iigo M et al (2007b) Differential response of type 2 deiodinase gene expression to photoperiod between photoperiodic Fischer 344 and nonphotoperiodic Wistar rats. Am J Physiol Regul Integr Comp Physiol 292:R1315–R1319. CrossRefPubMedGoogle Scholar
  90. Yasuo S, Yoshimura T, Ebihara S et al (2009) Melatonin transmits photoperiodic signals through the MT1 melatonin receptor. J Neurosci 29:2885–2889. CrossRefPubMedGoogle Scholar
  91. Yokoyama K, Oksche A, Darden TR et al (1978) The sites of encephalic photoreception in photoperiodic induction of the growth of the testes in the white-crowned sparrow, Zonotrichia leucophry sgambelii. Cell Tissue Res 189:441–467. CrossRefPubMedGoogle Scholar
  92. Yoshimura T (2004) Molecular bases for seasonal reproduction in birds. J Poult Sci 41:251–258. CrossRefGoogle Scholar
  93. Yoshimura T (2013) Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 34:157–166. CrossRefPubMedGoogle Scholar
  94. Yoshimura T, Yasuo S, Watanabe M et al (2003) Light-induced hormone conversion of T4 to T3 regulates photoperiodic response of gonads in birds. Nature 426:178–181. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Seasonal Biology, National Institute for Basic BiologyOkazakiJapan
  2. 2.Laboratory of Animal Physiology, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
  3. 3.Institute of Transformative Bio-molecules (WPI-ITbM)Nagoya UniversityNagoyaJapan
  4. 4.Avian Bioscience Research Center, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations