Advertisement

Larval and Adult Body Axes in Echinoderms

  • Akihito Omori
  • Mani Kikuchi
  • Mariko Kondo
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

The echinoderm body plan is amazing and unique among metazoans, with pentameral (fivefold) symmetry as adults. Fossil records indicate that most of the extinct species also had non-bilateral shapes. Five classes of extant echinoderm species show diverse morphologies incorporating the pentameral symmetry. The anterior-posterior axis of most living echinoderms is not obvious, and it appears to be radially symmetrical as well. Instead, an oral-aboral axis and a proximal-distal axis have been assigned. Moreover, the body axes are different in an embryo/larva when compared to an adult. Embryos and larvae are bilateral with animal-vegetal, anterior-posterior, left-right, dorsal-ventral (oral-aboral) axes present. The larvae metamorphose into pentameral adults, and together with the change in structure, the body axes change. This remarkable transition in morphology makes their study unique for understanding how body axes are formed and how they change in evolution. Molecular studies of the development of axes in embryos and larvae have shown that the factors and genes involved in axis formation in echinoderms are shared with other bilaterians and these mechanisms appear to be conserved. However, the development into a pentaradial adult remains a mystery. Recent findings based on analyses of hox genes suggest that the oral-aboral axis of the adult body is equivalent to the anterior-posterior axis of other bilaterians. In this chapter, we will discuss the correlation between the hox gene expression and transitions in this unique change in body axes.

Keywords

Echinoderm Body axis Development hox genes Adult rudiment Metamorphosis Pentameral symmetry Bilateral 

Notes

Acknowledgements

We thank Drs Gary Wessel (Brown University) and Brian Livingston (California State University Long Beach) for their critical reading of the manuscript.

References

  1. Aihara M, Amemiya S (2001) Left-right positioning of the adult rudiment in sea urchin larvae is directed by the right side. Development 4948:4935–4948Google Scholar
  2. Angerer LM, Dolecki GJ, Gagnon ML et al (1989) Progressively restricted expression of a homeo box gene within the aboral ectoderm of developing sea urchin embryos. Genes Dev 3:370–383CrossRefPubMedGoogle Scholar
  3. Arenas-Mena C, Martinez P, Cameron RA, Davidson EH (1998) Expression of the Hox gene complex in the indirect development of a sea urchin. Proc Natl Acad Sci 95:13062–13067.  https://doi.org/10.1073/pnas.95.22.13062 CrossRefPubMedGoogle Scholar
  4. Arenas-Mena C, Cameron AR, Davidson EH (2000) Spatial expression of Hox cluster genes in the ontogeny of a sea urchin. Development 127:4631–4643PubMedGoogle Scholar
  5. Arenas-Mena C, Cameron RA, Davidson EH (2006) Hindgut specification and cell-adhesion functions of Sphox11/13b in the endoderm of the sea urchin embryo. Develop Growth Differ 48:463–472.  https://doi.org/10.1111/j.1440-169X.2006.00883.x CrossRefGoogle Scholar
  6. Ausich WI, Kammer TW, Rhenberg EC, Wright DF (2015) Early phylogeny of crinoids within the pelmatozoan clade. Palaeontology 58:937–952.  https://doi.org/10.1111/pala.12204 CrossRefGoogle Scholar
  7. Baker AN, Rowe FWE, Clark HES (1986) A new class of Echinodermata from New Zealand. Nature 321:862–864.  https://doi.org/10.1038/321862a0 CrossRefGoogle Scholar
  8. Bather F (1900) The Echinoderma. In: Lankester ER (ed) A treatise on zoology, Part III. Adam & Charles Black, LondonGoogle Scholar
  9. Baughman KW, McDougall C, Cummins SF et al (2014) Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci. Genesis 52:952–958.  https://doi.org/10.1002/dvg.22840 CrossRefPubMedGoogle Scholar
  10. Beck F, Tata F, Chawengsaksophak K (2000) Homeobox genes and gut development. BioEssays 22:431–441.  https://doi.org/10.1002/(SICI)1521-1878(200005)22:5<431::AID-BIES5>3.0.CO;2-X CrossRefPubMedGoogle Scholar
  11. Bessodes N, Haillot E, Duboc V et al (2012) Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo. PLoS Genet 8:e1003121.  https://doi.org/10.1371/journal.pgen.1003121 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bienz M (1994) Homeotic genes and positional signalling in the Drosophila viscera. Trends Genet 10:22–26.  https://doi.org/10.1016/0168-9525(94)90015-9 CrossRefPubMedGoogle Scholar
  13. Bottjer DJ, Davidson EH, Peterson KJ, Cameron RA (2006) Paleogenomics of echinoderms. Science 314:956–960.  https://doi.org/10.1126/science.1132310 CrossRefPubMedGoogle Scholar
  14. Bradham C, McClay DR (2006) p38 MAPK in development and cancer. Cell Cycle 5:824–828.  https://doi.org/10.4161/cc.5.8.2685 CrossRefPubMedGoogle Scholar
  15. Brusca RC, Moore W, Shuster SM (2016) Invertebrates, 3rd edn. Sinauer, SunderlandGoogle Scholar
  16. Cameron RA, Rowen L, Nesbitt R et al (2006) Unusual gene order and organization of the sea urchin hox cluster. J Exp Zool B Mol Dev Evol 306B:45–58.  https://doi.org/10.1002/jez.b CrossRefGoogle Scholar
  17. Cannon JT, Kocot KM, Waits DS et al (2014) Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol 24:1–6.  https://doi.org/10.1016/j.cub.2014.10.016 CrossRefGoogle Scholar
  18. Cannon JT, Vellutini BC, Smith J et al (2016) Xenacoelomorpha is the sister group to Nephrozoa. Nature 530:89–93.  https://doi.org/10.1038/nature16520 CrossRefPubMedGoogle Scholar
  19. Cavalieri V, Spinelli G (2014) Early asymmetric cues triggering the dorsal/ventral gene regulatory network of the sea urchin embryo. elife 3:e04664.  https://doi.org/10.7554/eLife.04664 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Cavalieri V, Di Bernardo M, Anello L, Spinelli G (2008) Cis-regulatory sequences driving the expression of the Hbox12 homeobox-containing gene in the presumptive aboral ectoderm territory of the Paracentrotus lividus sea urchin embryo. Dev Biol 321:455–469.  https://doi.org/10.1016/j.ydbio.2008.06.006 CrossRefPubMedGoogle Scholar
  21. Child CM (1941) Patterns and problems of development. The University of Chicago Press, ChicagoCrossRefGoogle Scholar
  22. Cisternas P, Byrne M (2009) Expression of Hox4 during development of the pentamerous juvenile sea star, Parvulastra exigua. Dev Genes Evol 219:613–618.  https://doi.org/10.1007/s00427-010-0318-4 CrossRefPubMedGoogle Scholar
  23. Coffman JA, Coluccio A, Planchart A, Robertson AJ (2009) Oral-aboral axis specification in the sea urchin embryo. III. Role of mitochondrial redox signaling via H2O2. Dev Biol 330:123–130.  https://doi.org/10.1016/j.ydbio.2009.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Croce J, Range R, Wu S-Y et al (2011) Wnt6 activates endoderm in the sea urchin gene regulatory network. Development 138:3297–3306.  https://doi.org/10.1242/dev.058792 CrossRefPubMedPubMedCentralGoogle Scholar
  25. David B, Mooi R (2014) How Hox genes can shed light on the place of echinoderms among the deuterostomes. EvoDevo 5:22.  https://doi.org/10.1186/2041-9139-5-22 CrossRefPubMedPubMedCentralGoogle Scholar
  26. David B, Lefebvre B, Mooi R, Parsley R (2000) Are homalozoans echinoderms? An answer from the extraxial-axial theory. Paleobiology 26:529–555.  https://doi.org/10.1666/0094-8373(2000)026<0529:AHEAAF>2.0.CO;2 CrossRefGoogle Scholar
  27. Di Bernardo M, Russo R, Oliveri P et al (1995) Homeobox-containing gene transiently expressed in a spatially restricted pattern in the early sea urchin embryo. Proc Natl Acad Sci 92:8180–8184.  https://doi.org/10.1073/pnas.92.18.8180 CrossRefPubMedGoogle Scholar
  28. Duboc V, Röttinger E, Besnardeau L, Lepage T (2004) Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo. Dev Cell 6:397–410CrossRefPubMedGoogle Scholar
  29. Duboc V, Röttinger E, Lapraz F et al (2005) Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side. Dev Cell 9:147–158.  https://doi.org/10.1016/j.devcel.2005.05.008 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Duboc V, Lapraz F, Besnardeau L, Lepage T (2008) Lefty acts as an essential modulator of nodal activity during sea urchin oral-aboral axis formation. Dev Biol 320:49–59.  https://doi.org/10.1016/j.ydbio.2008.04.012 CrossRefPubMedGoogle Scholar
  31. Flowers VL, Courteau GR, Poustka AJ et al (2004) Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo. Dev Dyn 231:727–740.  https://doi.org/10.1002/dvdy.20194 CrossRefPubMedGoogle Scholar
  32. Garcia-Fernàndez J (2005) The genesis and evolution of homeobox gene clusters. Nat Rev Genet 6:881–892.  https://doi.org/10.1038/nrg1723 CrossRefPubMedGoogle Scholar
  33. Hano Y, Hayashi A, Yamaguchi S, Yamaguchi M (2001) Hox genes of the direct-type developing sea urchin Peronella japonica. Zool Sci 18:353–359.  https://doi.org/10.2108/zsj.18.353 CrossRefGoogle Scholar
  34. Hara Y, Yamaguchi M, Akasaka K et al (2006) Expression patterns of Hox genes in larvae of the sea lily Metacrinus rotundus. Dev Genes Evol 216:797–809.  https://doi.org/10.1007/s00427-006-0108-1 CrossRefPubMedGoogle Scholar
  35. Harada Y, Shoguchi E, Taguchi S et al (2002) Conserved expression pattern of BMP-2/4 in hemichordate acorn worm and echinoderm sea cucumber embryos. Zool Sci 19:1113–1121.  https://doi.org/10.2108/zsj.19.1113 CrossRefPubMedGoogle Scholar
  36. Hardin J, Illingworth CA (2006) A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos. Dev Dyn 235:3121–3131.  https://doi.org/10.1002/dvdy.20941 CrossRefPubMedGoogle Scholar
  37. Hibino T, Nishino A, Amemiya S (2006) Phylogenetic correspondence of the body axes in bilaterians is revealed by the right-sided expression of Pitx genes in echinoderm larvae. Develop Growth Differ 48:587–595.  https://doi.org/10.1111/j.1440-169X.2006.00892.x CrossRefGoogle Scholar
  38. Holland PWH, Garcia-Fernàndez J (1996) Hox genes and chordate evolution. Dev Biol 173:382–395.  https://doi.org/10.1006/dbio.1996.0034 CrossRefPubMedGoogle Scholar
  39. Hotchkiss FHC (1998) A “rays-as-appendages” model for the origin of pentamerism in echinoderms. Paleobiology 24(2):200–214Google Scholar
  40. Hyman LH (1955) The invertebrates: Echinodermata, vol IV. McGraw-Hill, New YorkGoogle Scholar
  41. Ikuta T, Saiga H (2005) Organization of Hox genes in ascidians: present, past, and future. Dev Dyn 233:382–389.  https://doi.org/10.1002/dvdy.20374 CrossRefPubMedGoogle Scholar
  42. Janies D (2001) Phylogenetic relationships of extant echinoderm classes. Can J Zool 79:1232–1250.  https://doi.org/10.1139/cjz-79-7-1232 CrossRefGoogle Scholar
  43. Janies D, Mooi R (1998) Xyloplax is an asteroid. In: Candia Carnevali MD, Bonasoro F (eds) Echinoderm research. A. A. Balkema, Rotterdam, pp 311–316Google Scholar
  44. Janies DA, Voight JR, Daly M (2011) Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Syst Biol 60:420–438.  https://doi.org/10.1093/sysbio/syr044 CrossRefPubMedGoogle Scholar
  45. Kammer TW, Sumrall CD, Zamora S et al (2013) Oral region homologies in paleozoic crinoids and other plesiomorphic pentaradial echinoderms. PLoS One 8:e77989.  https://doi.org/10.1371/journal.pone.0077989 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kawazoe Y, Sekimoto T, Araki M et al (2002) Region-specific gastrointestinal Hox code during murine embryonal gut development. Develop Growth Differ 44:77–84.  https://doi.org/10.1046/j.1440-169x.2002.00623.x CrossRefGoogle Scholar
  47. Kikuchi M, Omori A, Kurokawa D, Akasaka K (2015) Patterning of anteroposterior body axis displayed in the expression of Hox genes in sea cucumber Apostichopus japonicus. Dev Genes Evol 225:275–286.  https://doi.org/10.1007/s00427-015-0510-7 CrossRefPubMedGoogle Scholar
  48. Kroh A, Smith AB (2010) The phylogeny and classification of post-Palaeozoic echinoids. J Syst Palaeontol 8:147–212.  https://doi.org/10.1080/14772011003603556 CrossRefGoogle Scholar
  49. Krumlauf R (1994) Hox genes in vertebrate development. Cell 78:191–201.  https://doi.org/10.1016/0092-8674(94)90290-9 CrossRefPubMedGoogle Scholar
  50. Lapraz F, Besnardeau L, Lepage T (2009) Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network. PLoS Biol 7:e1000248.  https://doi.org/10.1371/journal.pbio.1000248 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lapraz F, Haillot E, Lepage T (2015) A deuterostome origin of the Spemann organiser suggested by nodal and ADMPs functions in echinoderms. Nat Commun 6:8434.  https://doi.org/10.1038/ncomms9434 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lewis EB (1978) A gene complex controlling segmentation in Drosophila. Nature 276:565–570.  https://doi.org/10.1128/AAC.03728-14 CrossRefPubMedGoogle Scholar
  53. Littlewood DTJ, Smith AB, Clough KA, Emson RH (1997) The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc 61:409–438.  https://doi.org/10.1111/j.1095-8312.1997.tb01799.x CrossRefGoogle Scholar
  54. Logan CY, Miller JR, Ferkowicz MJ, McClay DR (1998) Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. Development 126:345–357Google Scholar
  55. Long SC, Morris VB, Byrne M (2006) Seven Hox gene sequences from the asterinid starfish Patiriella exigua (Echinodermata: Asteroidea). Hydrobiologia 420:95–98CrossRefGoogle Scholar
  56. Lowe CJ, Wray GA (1997) Radical alterations in the roles of homeobox genes during echinoderm evolution. Nature 389:718–721.  https://doi.org/10.1038/39580 CrossRefPubMedGoogle Scholar
  57. Luo YJ, Su YH (2012) Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva. PLoS Biol 10:e1001402.  https://doi.org/10.1371/journal.pbio.1001402 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Mac Bride EW (1906) Echinodermata. In: Harmer SF, Shipley AE (eds) The Cambridge natural history. Macmillan & Company, LondonGoogle Scholar
  59. Mah CL (2006) A new species of Xyloplax (Echinodermata: Asteroidea: Concentricycloidea) from the northeast pacific: comparative morphology and a reassessment of phylogeny. Invertebr Biol 125:136–153.  https://doi.org/10.1111/j.1744-7410.2006.00048.x CrossRefGoogle Scholar
  60. Mah CL, Blake DB (2012) Global diversity and phylogeny of the Asteroidea (Echinodermata). PLoS One.  https://doi.org/10.1371/journal.pone.0035644 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Mallatt J, Winchell CJ (2007) Ribosomal RNA genes and deuterostome phylogeny revisited: more cyclostomes, elasmobranchs, reptiles, and a brittle star. Mol Phylogenet Evol 43:1005–1022.  https://doi.org/10.1016/j.ympev.2006.11.023 CrossRefPubMedGoogle Scholar
  62. Materna SC, Swartz SZ, Smith J (2013) Notch and nodal control forkhead factor expression in the specification of multipotent progenitors in sea urchin. Development 140:1796–1806.  https://doi.org/10.1242/dev.091157 CrossRefPubMedPubMedCentralGoogle Scholar
  63. McCain ER, McClay DR (1994) The establishment of bilateral asymmetry in sea urchin embryo. Development 120:395–404Google Scholar
  64. Méndez AT, Roig-López JL, Santiago P et al (2000) Identification of Hox gene sequences in the sea cucumber Holothuria glaberrima Selenka (Holothuroidea: Echinodermata). Mar Biotechnol 2:231–240.  https://doi.org/10.1007/s101269900027 CrossRefPubMedGoogle Scholar
  65. Minsuk SB, Turner FR, Andrews ME, Raff RA (2009) Axial patterning of the pentaradial adult echinoderm body plan. Dev Genes Evol 219:89–101.  https://doi.org/10.1007/s00427-009-0270-3 CrossRefPubMedGoogle Scholar
  66. Mito T, Endo K (1997) A PCR survey of hox genes in the sea star, Asterina Minor. Mol Phylogenet Evol 8:218–224.  https://doi.org/10.1006/mpev.1997.0417 CrossRefPubMedGoogle Scholar
  67. Mito T, Endo K (2000) PCR survey of Hox genes in the crinoid and ophiuroid: evidence for anterior conservation and posterior expansion in the echinoderm Hox gene cluster. Mol Phylogenet Evol 14:375–388.  https://doi.org/10.1006/mpev.1999.0707 CrossRefPubMedGoogle Scholar
  68. Molina MD, de Crozé N, Haillot E, Lepage T (2013) Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo. Curr Opin Genet Dev 23:445–453.  https://doi.org/10.1016/j.gde.2013.04.010 CrossRefPubMedGoogle Scholar
  69. Mooi R, David B (1998) Evolution within a bizarre phylum: homologies of the first echinoderms. Am Zool 38:965–974.  https://doi.org/10.1093/icb/38.6.965 CrossRefGoogle Scholar
  70. Mooi R, David B, Marchand D (1994) Echinoderm skeletal homologies: classical morphology meets modern phylogenetics. In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 87–95Google Scholar
  71. Mooi R, David B, Wray GA (2005) Arrays in rays: terminal addition in echinoderms and its correlation with gene expression. Evol Dev 7:542–555.  https://doi.org/10.1111/j.1525-142X.2005.05058.x CrossRefPubMedGoogle Scholar
  72. Morris VB, Byrne M (2005) Involvement of two Hox genes and Otx in echinoderm body-plan morphogenesis in the sea urchin Holopneustes purpurescens. J Exp Zool B Mol Dev Evol 304B:456–467.  https://doi.org/10.1002/jez.b.21065.ECHINODERM CrossRefGoogle Scholar
  73. Morris VB, Byrne M (2014) Oral-aboral identity displayed in the expression of HpHox3 and HpHox11/13 in the adult rudiment of the sea urchin Holopneustes purpurescens. Dev Genes Evol 224:1–11.  https://doi.org/10.1007/s00427-013-0457-5 CrossRefPubMedGoogle Scholar
  74. Morris VB, Zhao J-T, Shearman DCA et al (2004) Expression of an Otx gene in the adult rudiment and the developing central nervous system in the vestibula larva of the sea urchin Holopneustes purpurescens. Int J Dev Biol 48:17–22CrossRefPubMedGoogle Scholar
  75. Motokawa T (1984) Connective tissue catch in echinoderms. Biol Rev 59:255–270.  https://doi.org/10.1111/j.1469-185X.1984.tb00409.x CrossRefGoogle Scholar
  76. Nakamura T, Hamada H (2012) Left-right patterning: conserved and divergent mechanisms. Development 139:3257–3262.  https://doi.org/10.1242/dev.061606 CrossRefPubMedGoogle Scholar
  77. Nakano H, Hibino T, Oji T et al (2003) Larval stages of a living sea lily (stalked crinoid echinoderm). Nature 421:158–160.  https://doi.org/10.1038/nature01236.1. CrossRefPubMedGoogle Scholar
  78. Nam J, YH S, Lee PY et al (2007) Cis-regulatory control of the nodal gene, initiator of the sea urchin oral ectoderm gene network. Dev Biol 306:860–869.  https://doi.org/10.1016/j.ydbio.2007.03.033 CrossRefPubMedPubMedCentralGoogle Scholar
  79. O’Hara TD, Hugall AF, Thuy B, Moussalli A (2014) Phylogenomic resolution of the class ophiuroidea unlocks a global microfossil record. Curr Biol 24:1874–1879.  https://doi.org/10.1016/j.cub.2014.06.060 CrossRefPubMedGoogle Scholar
  80. Omori A, Akasaka K, Kurokawa D, Amemiya S (2011) Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus. Gene Expr Patterns 11:48–56.  https://doi.org/10.1016/j.gep.2010.09.002 CrossRefPubMedGoogle Scholar
  81. Paul CRC, Smith AB (1984) The early radiation and phylogeny of echinoderms. Biol Rev 59:443–481CrossRefGoogle Scholar
  82. Pehrson JR, Cohen LH (1986) The fate of the small micromeres in sea urchin development. Dev Biol 113:522–526.  https://doi.org/10.1016/0012-1606(86)90188-0 CrossRefPubMedGoogle Scholar
  83. Petersen CP, Reddien PW (2009) Wnt signaling and the polarity of the primary body axis. Cell 139:1056–1068.  https://doi.org/10.1016/j.cell.2009.11.035 CrossRefPubMedGoogle Scholar
  84. Peterson KJ (2004) Isolation of Hox and Parahox genes in the hemichordate Ptychodera flava and the evolution of deuterostome Hox genes. Mol Phylogenet Evol 31:1208–1215.  https://doi.org/10.1016/j.ympev.2003.10.007 CrossRefPubMedGoogle Scholar
  85. Peterson KJ, Arenas-Mena C, Davidson EH (2000) The A/P axis in echinoderm ontogeny and evolution: evidence from fossils and molecules. Evol Dev 2:93–101CrossRefPubMedGoogle Scholar
  86. Pisani D, Feuda R, Peterson KJ, Smith AB (2012) Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Mol Phylogenet Evol 62:27–34.  https://doi.org/10.1016/j.ympev.2011.08.028 CrossRefPubMedGoogle Scholar
  87. Range R, Lepage T (2011) Maternal Oct1/2 is required for nodal and Vg1/univin expression during dorsal-ventral axis specification in the sea urchin embryo. Dev Biol 357:440–449.  https://doi.org/10.1016/j.ydbio.2011.07.005 CrossRefPubMedGoogle Scholar
  88. Range R, Lapraz F, Quirin M et al (2007) Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by univin, a TGF-beta related to Vg1. Development 134:3649–3664.  https://doi.org/10.1242/dev.007799 CrossRefPubMedGoogle Scholar
  89. Range RC, Angerer RC, Angerer LM (2013) Integration of canonical and noncanonical Wnt signaling pathways patterns the Neuroectoderm along the anterior-posterior axis of sea urchin embryos. PLoS Biol 11:e1001467.  https://doi.org/10.1371/journal.pbio.1001467 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Ransick A, Rast JP, Minokawa T et al (2002) New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. Dev Biol 246:132–147.  https://doi.org/10.1006/dbio.2002.0607 CrossRefPubMedGoogle Scholar
  91. Reich A, Dunn CW, Akasaka K, Wessel G (2015) Phylogenomic analyses of Echinodermata support the sister groups of Asterozoa and Echinozoa. PLoS One 10:e0119627.  https://doi.org/10.1371/journal.pone.0119627 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Roberts DJ, Johnson RL, Burke AC et al (1995) Sonic hedgehog is an endodermal signal inducing Bmp-4 and Hox genes during induction and regionalization of the chick hindgut. Development 121:3163–3174PubMedGoogle Scholar
  93. Rozhnov SV (2012) Development of symmetry and asymmetry in the early evolution of the echinoderms. Paleontol J 46:780–792.  https://doi.org/10.1134/S0031030112080114 CrossRefGoogle Scholar
  94. Rozhnov SV (2014) Symmetry of echinoderms: from initial bilaterally-asymmetric metamerism to pentaradiality. Nat Sci 6:171–183.  https://doi.org/10.4236/ns.2014.64021 CrossRefGoogle Scholar
  95. Sakiyama J, Yokouchi Y, Kuroiwa A (2001) HoxA and HoxB cluster genes subdivide the digestive tract into morphological domains during chick development. Mech Dev 101:233–236.  https://doi.org/10.1016/S0925-4773(00)00564-5 CrossRefPubMedGoogle Scholar
  96. Shoguchi E, Harada Y, Numakunai T, Satoh N (2000) Expression of the otx gene in the ciliary bands during sea cucumber embryogenesis. Genesis 27:58–63CrossRefPubMedGoogle Scholar
  97. Shu D-G, Morris SC, Han J et al (2004) Ancestral echinoderms from the Chengjiang deposits of China. Nature 430:422–428.  https://doi.org/10.1038/nature02648 CrossRefPubMedGoogle Scholar
  98. Smith AB (1984) Classification of the Echinodermata. Palaeontology 27:431–459Google Scholar
  99. Smith AB (2005) The pre-radial history of echinoderms. Geol J 40:255–280.  https://doi.org/10.1002/gj.1018 CrossRefGoogle Scholar
  100. Smith AB, Zamora S (2013) Cambrian spiral-plated echinoderms from Gondwana reveal the earliest pentaradial body plan. Proc R Soc B Biol Sci 280:20131197.  https://doi.org/10.1098/rspb.2013.1197 CrossRefGoogle Scholar
  101. Smith AB, Zamora S, Alvaro JJ (2013) The oldest echinoderm faunas from Gondwana show that echinoderm body plan diversification was rapid. Nat Commun 4:1385.  https://doi.org/10.1038/ncomms2391 CrossRefPubMedGoogle Scholar
  102. Sprinkle J, Wilbur BC (2005) Deconstructing helicoplacoids: reinterpreting the most enigmatic Cambrian echinoderms. Geol J 40:281–293.  https://doi.org/10.1002/gj.1015 CrossRefGoogle Scholar
  103. Sumrall CD (2008) The origin of Loven’s rule in glyptocystitoid rhombiferans and its beraring on the plate homology and heterochronic evolution of the hemicosmitoid peristomial border. In: Ausich WI, Webster GD (eds) Echinoderm paleobiology, chapter 11. Indiana University Press, Bloomington, pp 228–241Google Scholar
  104. Sumrall CD (2010) A model for elemental homology for the peristome and ambulacra in blastozoan echinoderms. In: Harris LG, Böttger SA, Walker CW, Lesser MP (eds) Echinoderms: Durham. CRC Press, London, pp 269–276Google Scholar
  105. Sumrall CD, Wray GA (2007) Ontogeny in the fossil record: diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology 33(1):149–163.  https://doi.org/10.1666/06053.1 CrossRefGoogle Scholar
  106. Swalla BJ, Smith AB (2008) Deciphering deuterostome phylogeny: molecular, morphological, and palaeontological perspectives. Philos Trans R Soc B Biol Sci 363:1557–1568.  https://doi.org/10.1093/acprof:oso/9780199549429.003.0009 CrossRefGoogle Scholar
  107. Telford MJ (2013) Field et al. Redux. EvoDevo 4:5.  https://doi.org/10.1186/2041-9139-4-5 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Telford MJ, Lowe CJ, Cameron CB et al (2014) Phylogenomic analysis of echinoderm class relationships supports Asterozoa. Proc R Soc B Biol Sci 281:20140479–20140479.  https://doi.org/10.1098/rspb.2014.0479 CrossRefGoogle Scholar
  109. Tsuchimoto J, Yamaguchi M (2014) Hox expression in the direct-type developing sand dollar Peronella japonica. Dev Dyn 243:1020–1029.  https://doi.org/10.1002/dvdy.24135 CrossRefPubMedGoogle Scholar
  110. Tu Q, Brown CT, Davidson EH, Oliveri P (2006) Sea urchin forkhead gene family: phylogeny and embryonic expression. Dev Biol 300:49–62.  https://doi.org/10.1016/j.ydbio.2006.09.031 CrossRefPubMedGoogle Scholar
  111. Wada H, Garcia-Fernàndez J, Holland PWH (1999) Colinear and segmental expression of amphioxus Hox genes. Dev Biol 213:131–141.  https://doi.org/10.1006/dbio.1999.9369 CrossRefPubMedGoogle Scholar
  112. Wei Z, Yaguchi J, Yaguchi S et al (2009) The sea urchin animal pole domain is a Six3-dependent neurogenic patterning center. Development 136:1179–1189.  https://doi.org/10.1242/dev.032300 CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wray GA (1999) Echinodermata. Spiny-skinned animals: sea urchins, starfish, and their allies. Version 14 December 1999 (under construction). http://tolweb.org/Echinodermata/2497/1999.12.14 in the tree of life web project. http://tolweb.org/
  114. Yaguchi S, Yaguchi J, Angerer RC, Angerer LM (2008) A Wnt-FoxQ2-nodal pathway links primary and secondary axis specification in sea urchin embryos. Dev Cell 14:97–107.  https://doi.org/10.1016/j.devcel.2007.10.012 CrossRefPubMedGoogle Scholar
  115. Yokouchi Y, Sakiyama J-I, Kuroiwa A (1995) Coordinated expression of Abd-B subfamily genes of the HoxA cluster in the developing digestive tract of chick embryo. Dev Biol 169:76–89.  https://doi.org/10.1006/dbio.1995.1128 CrossRefPubMedGoogle Scholar
  116. Zamora S, Rahman IA (2015) Deciphering the early evolution of echinoderms with Cambrian fossils. Palaeontology 57:1105–1119.  https://doi.org/10.1111/pala.12138 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Misaki Marine Biological Station, Graduate School of ScienceThe University of TokyoMiuraJapan
  2. 2.Sado Marine Biological Station, Faculty of ScienceNiigata UniversitySadoJapan
  3. 3.Innate Immunity Laboratory, Faculty of Advanced Life ScienceHokkaido UniversitySapporoJapan

Personalised recommendations