Advertisement

Sex Determination and Differentiation in Frogs

  • Michihiko Ito
Chapter
Part of the Diversity and Commonality in Animals book series (DCA)

Abstract

In amphibians, it is believed that sex is genetically determined. The genetic sex-determining systems of amphibians include female (ZW) and male (XY) heterogamety. Interestingly, the Japanese Wrinkled Frog (Glandirana (Rana) rugosa) has both types of heterogamety, which was caused by geographic variation. Although almost all mammalian and avian species have heteromorphic sex chromosomes, the majority of amphibians, including the African Clawed Frog Xenopus laevis, possess homomorphic sex chromosomes. Thus, there should be a variety of sex-determining genes in amphibians. However, little is known about the molecular mechanisms underlying sex determination, although a W chromosome-linked gene dm-w in X. laevis was reported in 2008 to be responsible for a case of female sex determination. In contrast to the heterogamety, gonadal sexual differentiation follows a more conservative system. In many frog species, exposure of tadpoles with undifferentiated gonads to estrogen or androgen can induce male-to-female or female-to-male sex reversal, respectively. These findings suggest that sex steroid hormones have important roles in early sex differentiation. Estrogen- and androgen-synthesizing genes cyp19a1 and cyp17a1 show sexually dimorphic expression in early differentiating gonads in some frog species. In X. laevis, the structure called ‘mass-in-line,’ consisting of cyp17a1/cyp19a1-expressing cells, is involved in ovarian cavity formation. This chapter describes these situations in detail, and co-evolution between sex-determining genes and sex chromosomes is discussed. Germ cell development including gametogenesis and its endocrine control are also described.

Keywords

Sex chromosome Sex steroid Sex-determining gene Heterogamety Gonadal development Transcription factor Sexual dimorphism 

References

  1. Abramyan J, Ezaz T, Graves JA, Koopman P (2009) Z and W sex chromosomes in the cane toad (Bufo Marinus). Chromosom Res 17:1015–1024CrossRefGoogle Scholar
  2. Barrionuevo FJ, Burgos M, Scherer G, Jiménez R (2012) Genes promoting and disturbing testis development. Histol Histopathol 27:1361–1383PubMedGoogle Scholar
  3. Bewick AJ, Anderson DW, Evans BJ (2011) Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65:698–712CrossRefPubMedGoogle Scholar
  4. Chang CY, Witschi E (1956) Genic control and hormonal reversal of sex differentiation in Xenopus. Proc Soc Exp Biol Med 93:140CrossRefPubMedGoogle Scholar
  5. Chassot AA, Gillot I, Chaboissier MC (2014) R-spondin1, WNT4, and the CTNNB1 signaling pathway: strict control over ovarian differentiation. Reproduction 148:R97–110CrossRefPubMedGoogle Scholar
  6. Dagklis T, Ravanos K, Makedou K, Kourtis A, Rousso D (2015) Common features and differences of the hypothalamic-pituitary-gonadal axis in male and female. Gynecol Endocrinol 31:14–17CrossRefPubMedGoogle Scholar
  7. De Almeida CG, Grafe TU, Guttenbach M, Schmid M (1990) Karyotype and chromosome banding in the reed frog Hyperolius Viridiflavus ommatostictus (Amphibia, Anura, Hyperoliidae). Experientia 46:509–511CrossRefPubMedGoogle Scholar
  8. Eggert C (2004) Sex determination: the amphibian models. Reprod Nutr Dev 44:539–549CrossRefPubMedGoogle Scholar
  9. Fujii J, Kodama M, Oike A, Matsuo Y, Min MS, Hasebe T, Ishizuya-Oka A, Kawakami K, Nakamura M (2014) Involvement of androgen receptor in sex determination in an amphibian species. PLoS One 9:e93655CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fujitani K, Otomo A, Wada M, Takamatsu N, Ito M (2016) Sexually dimorphic expression of Dmrt1 and γH2AX in germ stem cells during gonadal development in Xenopus laevis. FEBS Open Bio 26:276–284CrossRefGoogle Scholar
  11. Graves JA (2008) Weird animal genomes and the evolution of vertebrate sex and sex chromosomes. Annu Rev Genet 42:565–586CrossRefGoogle Scholar
  12. Guigon CJ, Coudouel N, Mazaud-Guittot S, Forest MG, Magre S (2005) Follicular cells acquire sertoli cell characteristics after oocyte loss. Endocrinology 146:2992–3004CrossRefPubMedGoogle Scholar
  13. Hattori RS, Murai Y, Oura M, Masuda S, Majhi SK, Sakamoto T, Fernandino JI, Somoza GM, Yokota M, Strüssmann CA (2012) A Y-linked anti-Müllerian hormone duplication takes over a critical role in sex determination. Proc Natl Acad Sci U S A 109:2955–2959CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hayes TB (1998) Sex determination and primary sex differentiation in amphibians: genetic and developmental mechanisms. J Exp Zool 281:373–399CrossRefPubMedGoogle Scholar
  15. Hu F, Smith EE, Carr JA (2008) Effects of larval exposure to estradiol on spermatogenesis and in vitro gonadal steroid secretion in African clawed frogs, Xenopus Laevis. Gen Comp Endocrinol 155:190–200CrossRefPubMedGoogle Scholar
  16. Ito M, Mawaribuchi S (2013) Molecular evolution of genes involved in vertebrate sex determination. In: eLS. Wiley, ChichesterGoogle Scholar
  17. Kiuchi T, Koga H, Kawamoto M, Shoji K, Sakai H, Arai Y, Ishihara G, Kawaoka S, Sugano S, Shimada T, Suzuki Y, Suzuki MG, Katsuma S (2014) A single female-specific piRNA is the primary determiner of sex in the silkworm. Nature 509:633–636CrossRefPubMedGoogle Scholar
  18. Klinge CM (2001) Estrogen receptor interaction with estrogen response elements. Nucleic Acids Res 29:2905–2919CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kodama M, Suda M, Sakamoto D, Iwasaki T, Matsuo Y, Uno Y, Matsuda Y, Nakamura Y, Maekawa S, Katsu Y, Nakamura M (2015) Molecular cloning and characterization of anti-Müllerian hormone (AMH) from the Japanese wrinkled frog, Rana rugosa. Endocrinology 156:1914–1923CrossRefPubMedGoogle Scholar
  20. Koyano S, Ito M, Takamatsu N, Takiguchi S, Shiba T (1997) The Xenopus Sox3 gene expressed in oocytes of early stages. Gene 188:101–107CrossRefPubMedGoogle Scholar
  21. Krentz AD, Murphy MW, Zhang T, Sarver AL, Jain S, Griswold MD, Bardwell VJ, Zarkower D (2011) Interaction between DMRT1 function and genetic background modulates signaling and pluripotency to control tumor susceptibility in the fetal germ line. Dev Biol 377:67–78CrossRefGoogle Scholar
  22. Kurokawa H, Saito D, Nakamura S, Katoh-Fukui Y, Ohta K, Baba T, Morohashi K, Tanaka M (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci U S A 104:16958–16963CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lambeth LS, Raymond CS, Roeszler KN, Kuroiwa A, Nakata T, Zarkower D, Smith CA (2014) Over-expression of DMRT1 induces the male pathway in embryonic chicken gonads. Dev Biol 389:160–172CrossRefPubMedPubMedCentralGoogle Scholar
  24. Malcom JW, Kudra RS, Malone JH (2014) The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J Genomics 2:68–76CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maruo K, Suda M, Yokoyama S, Oshima Y, Nakamura M (2008) Steroidogenic gene expression during sex determination in the frog Rana Rugosa. Gen Comp Endocrinol 158:87–94CrossRefPubMedGoogle Scholar
  26. Masui Y (2001) From oocyte maturation to the in vitro cell cycle: the history of discoveries of maturation-promoting factor (MPF) and cytostatic factor (CSF). Differentiation 69:1–17CrossRefPubMedGoogle Scholar
  27. Masui Y, Markert CL (1971) Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. J Exp Zool 177:129–145CrossRefPubMedGoogle Scholar
  28. Masuyama H, Yamada M, Kamei Y, Fujiwara-Ishikawa T, Todo T, Nagahama Y, Matsuda M (2012) Dmrt1 mutation causes a male-to-female sex reversal after the sex determination by Dmy in the medaka. Chromosom Res 20:163–176CrossRefGoogle Scholar
  29. Matson CK, Murphy MW, Griswold MD, Yoshida S, Bardwell VJ, Zarkower D (2010) The mammalian doublesex homolog DMRT1 is a transcriptional gatekeeper that controls the mitosis versus meiosis decision in male germ cells. Dev Cell 19:612–624CrossRefPubMedPubMedCentralGoogle Scholar
  30. Matson CK, Murphy MW, Sarver AL, Griswold MD, Bardwell VJ, Zarkower D (2011) DMRT1 prevents female reprogramming in the postnatal mammalian testis. Nature 476:101–104CrossRefPubMedPubMedCentralGoogle Scholar
  31. Matsuda M, Nagahama Y, Shinomiya A, Sato T, Matsuda C, Kobayashi T, Morrey CE, Shibata N, Asakawa S, Shimizu N, Hori H, Hamaguchi S, Sakaizumi M (2002) DMY is a Y-specific DM-domain gene required for male development in the medaka fish. Nature 417:559–563CrossRefPubMedGoogle Scholar
  32. Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M (2015) A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res 145:187–191. (Epub ahead of print) PMID: 25871511CrossRefPubMedGoogle Scholar
  33. Mawaribuchi S, Yoshimoto S, Ohashi S, Takamatsu N, Ito M (2012) Molecular evolution of vertebrate sex-determining genes. Chromosom Res 20:139–151CrossRefGoogle Scholar
  34. Mawaribuchi S, Musashijima M, Wada M, Izutsu Y, Kurakata E, Park MK, Takamatsu N, Ito M (2017a) Molecular evolution of two distinct dmrt1 promoters for germ and somatic cells in vertebrate gonads. Mol Biol Evol 34:724–733PubMedGoogle Scholar
  35. Mawaribuchi S, Takahashi S, Wada M, Uno Y, Matsuda Y, Kondo M, Fukui A, Takamatsu N, Taira M, Ito M (2017b) Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev Biol 426(2):393–400CrossRefPubMedGoogle Scholar
  36. Mawaribuchi S, Ikeda N, Fujitani K, Ito Y, Onuma Y, Komiya T, Takamatsu N, Ito M (2014) Cell-mass structures expressing the aromatase gene Cyp19a1 lead to ovarian cavities in Xenopus laevis. Endocrinology 155:3996–4005CrossRefPubMedGoogle Scholar
  37. Miura I (2007) An evolutionary witness: the frog rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex Dev 1:323–331CrossRefPubMedGoogle Scholar
  38. Miura I, Ohtani H, Nakamura M, Ichikawa Y, Saitoh K (1998) The origin and differentiation of the heteromorphic sex chromosomes Z, W, X, and Y in the frog Rana Rugosa, inferred from the sequences of a sex-linked gene, ADP/ATP translocase. Mol Biol Evol 15:1612–1619CrossRefPubMedGoogle Scholar
  39. Miura I, Kitamoto H, Koizumi Y, Ogata M, Sasaki K (2011) An X-linked body color gene of the frog Rana Rugosa and its application to the molecular analysis of gonadal sex differentiation. Sex Dev 5:250–258CrossRefPubMedGoogle Scholar
  40. Nakamura S, Watakabe I, Nishimura T, Toyoda A, Taniguchi Y, Tanaka M (2012) Analysis of medaka sox9 orthologue reveals a conserved role in germ cell maintenance. PLoS One 7:e29982CrossRefPubMedPubMedCentralGoogle Scholar
  41. Nanda I, Kondo M, Hornung U, Asakawa S, Winkler C, Shimizu A, Shan Z, Haaf T, Shimizu N, Shima A, Schmid M, Schartl M (2002) A duplicated copy of DMRT1 in the sex-determining region of the Y chromosome of the medaka, Oryzias Latipes. Proc Natl Acad Sci U S A 99:11778–11783CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nishioka M, Miura I, Saitoh K (1993) Sex chromosomes of Rana rugosa with special reference to local differences in sex determining mechanism. Sci Rep Lab Amphibian Biol Hiroshima Univ 12:55–81Google Scholar
  43. Nurse P (1990) Universal control mechanism regulating onset of M-phase. Nature 344:503–508CrossRefPubMedGoogle Scholar
  44. Ogata M, Hasegawa Y, Ohtani H, Mineyama M, Miura I (2008) The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana Rugosa. Heredity (Edinb) 100:92–99CrossRefGoogle Scholar
  45. Ohtani H, Miura I, Ichikawa Y (2003) Role of aromatase and androgen receptor expression in gonadal sex differentiation of ZW/ZZ-type frogs, Rana Rugosa. Comp Biochem Physiol C Toxicol Pharmacol 134:215–225CrossRefPubMedGoogle Scholar
  46. Okada E, Yoshimoto S, Ikeda N, Kanda H, Tamura K, Shiba T, Takamatsu N, Ito M (2009) Xenopus W-linked DM-W induces Foxl2 and Cyp19 expression during ovary formation. Sex Dev 3:38–42CrossRefPubMedGoogle Scholar
  47. Oshima Y, Hayashi T, Tokunaga S, Nakamura M (2005) Wnt4 expression in the differentiating gonad of the frog Rana Rugosa. Zool Sci 22:689–693CrossRefPubMedGoogle Scholar
  48. Oshima Y, Uno Y, Matsuda Y, Kobayashi T, Nakamura M (2008) Molecular cloning and gene expression of Foxl2 in the frog Rana Rugosa. Gen Comp Endocrinol 159:170–177CrossRefPubMedGoogle Scholar
  49. Oshima Y, Naruse K, Nakamura Y, Nakamura M (2009) Sox3: a transcription factor for Cyp19 expression in the frog Rana Rugosa. Gene 445:38–48CrossRefPubMedGoogle Scholar
  50. Perrin N (2009) Sex reversal: a fountain of youth for sex chromosomes? Evolution 63:3043–3039CrossRefPubMedGoogle Scholar
  51. Philpott A, Yew PR (2008) The Xenopus cell cycle: an overview. Mol Biotechnol 39:9–19CrossRefPubMedGoogle Scholar
  52. Piprek RP, Pecio A, Kubiak JZ, Szymura JM (2012a) Differential effects of busulfan on gonadal development in five divergent anuran species. Reprod Toxicol 34:393–401CrossRefPubMedGoogle Scholar
  53. Piprek RP, Pecio A, Kubiak JZ, Szymura JM (2012b) Differential effects of testosterone and 17β-estradiol on gonadal development in five anuran species. Reproduction 144:257–267CrossRefPubMedGoogle Scholar
  54. Piprek RP, Pecio A, Laskowska-Kaszub K, Kubiak JZ, Szymura JM (2013) Sexual dimorphism of AMH, DMRT1 and RSPO1 localization in the developing gonads of six anuran species. Int J Dev Biol 57:891–895CrossRefPubMedGoogle Scholar
  55. Raucci F, Di Fiore MM (2007) The c-kit receptor protein in the testis of green frog Rana Esculenta: seasonal changes in relationship to testosterone titres and spermatogonial proliferation. Reproduction 133:51–60CrossRefPubMedGoogle Scholar
  56. Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M (2015) Coexistence of Y, W, and Z sex chromosomes in Xenopus Tropicalis. Proc Natl Acad Sci U S A 112:E4752–E4761CrossRefPubMedPubMedCentralGoogle Scholar
  57. Saotome K, Isomura T, Seki T, Nakamura Y, Nakamura M (2010) Structural changes in gonadal basement membranes during sex differentiation in the frog Rana Rugosa. J Exp Zool A Ecol Genet Physiol 313:369–380CrossRefPubMedGoogle Scholar
  58. Scaia MF, Volonteri MC, Czuchlej SC, Ceballos NR (2015) Effect of estradiol on apoptosis, proliferation and steroidogenic enzymes in the testes of the toad Rhinella Arenarum (Amphibia, Anura). Gen Comp Endocrinol .(in press 221:244CrossRefPubMedGoogle Scholar
  59. Schmid M, Bachmann K (1981) A frog with highly evolved sex chromosomes. Experientia 37:243–245CrossRefPubMedGoogle Scholar
  60. Schmid M, Haaf T, Geile B, Sims S (1983) Chromosome banding in Amphibia. VIII. An unusual XY/XX-sex chromosome system in Gastrotheca Riobambae (Anura, Hylidae). Chromosoma 88:69–82CrossRefPubMedGoogle Scholar
  61. Schmid M, Steinlein C, Bogart JP, Feichtinger W, León P, La Marca E, Díaz LM, Sanz A, Chen SH, Hedges SB (2010) The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res 130–131:1–568CrossRefPubMedGoogle Scholar
  62. Shibata K, Takase M, Nakamura M (2002) The Dmrt1 expression in sex-reversed gonads of amphibians. Gen Comp Endocrinol 127:232–241CrossRefPubMedGoogle Scholar
  63. Slanchev K, Stebler J, de la Cueva-Méndez G, Raz E (2005) Development without germ cells: the role of the germ line in zebrafish sex differentiation. Proc Natl Acad Sci U S A 102:4074–4079CrossRefPubMedPubMedCentralGoogle Scholar
  64. Smith LD, Ecker RE (1971) The interaction of steroids with Rana Pipiens oocytes in the induction of maturation. Dev Biol 25:232–247CrossRefPubMedGoogle Scholar
  65. Smith CA, Roeszler KN, Ohnesorg T, Cummins DM, Farlie PG, Doran TJ, Sinclair AH (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461:267–271CrossRefPubMedGoogle Scholar
  66. Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, Rogers N, Knower K, Rowley L, Eyre H, Rizzoti K, McAninch D, Goncalves J, Slee J, Turbitt E, Bruno D, Bengtsson H, Harley V, Vilain E, Sinclair A, Lovell-Badge R, Thomas P (2011) Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121:328–341CrossRefPubMedGoogle Scholar
  67. Takehana Y, Matsuda M, Myosho T, Suster ML, Kawakami K, Shin-I T, Kohara Y, Kuroki Y, Toyoda A, Fujiyama A, Hamaguchi S, Sakaizumi M, Naruse K (2014) Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias Dancena. Nat Commun 5:4157CrossRefPubMedGoogle Scholar
  68. Tsutsui K, Ubuka T (2014) Breakthrough in neuroendocrinology by discovering novel neuropeptides and neurosteroids: 1. Discovery of gonadotropin-inhibitory hormone (GnIH) across vertebrates. Gen Comp Endocrinol 205:4–10CrossRefPubMedGoogle Scholar
  69. Uhlenhaut NH, Jakob S, Anlag K, Eisenberger T, Sekido R, Kress J, Treier AC, Klugmann C, Klasen C, Holter NI, Riethmacher D, Schütz G, Cooney AJ, Lovell-Badge R, Treier M (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139:1130–1142CrossRefPubMedGoogle Scholar
  70. Uno Y, Nishida C, Oshima Y, Yokoyama S, Miura I, Matsuda Y, Nakamura M (2008) Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana Rugosa, Ranidae) with ZW and XY sex chromosome systems. Chromosom Res 16:637–647CrossRefGoogle Scholar
  71. Villalpando I, Merchant-Larios H (1990) Determination of the sensitive stages forgonadal sex-reversal in Xenopus Laevis tadpoles. Int J Dev Biol 34:281–285PubMedGoogle Scholar
  72. Wada M, Fujitani K, Tamura K, Mawaribuchi S, Kamata Y, Takamatsu N, Ito M (2017) Masculinization-related genes and cell-mass structures during early gonadal differentiation in the African clawed frog. Zool Sci 34(2):105–111CrossRefPubMedGoogle Scholar
  73. Yoshimoto S, Ito M (2011) A ZZ/ZW-type sex determination in Xenopus laevis. FEBS J 278:1020–1026CrossRefPubMedGoogle Scholar
  74. Yoshimoto S, Okada E, Umemoto H, Tamura K, UnoY N-UC, Matsuda Y, Takamatsu N, Shiba T, Ito M (2008) A W-linked DM-domain gene, DM-W, participates in primary ovary developmentin Xenopus Laevis. Proc Natl Acad Sci U S A 105:2469–2474CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yoshimoto S, Ikeda N, Izutsu Y, Shiba T, Takamatsu N, Ito M (2010) Opposite roles of DMRT1 and its W-linked paralogue, DM-W, in sexual dimorphism of Xenopus laevis: implications of a ZZ/ZW-type sex-determining system. Development 137:2519–2526CrossRefPubMedGoogle Scholar
  76. Zhao L, Svingen T, Ng ET, Koopman P (2015) Female-to-male sex reversal in mice caused by transgenic overexpression of Dmrt1. Development 142:1083–1088CrossRefPubMedGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Bioscience, School of ScienceKitasato UniversitySagamiharaJapan

Personalised recommendations