Advertisement

Kinematics and Motion Analysis

  • Wataru SaharaEmail author
  • Kazuomi Sugamoto
Chapter

Abstract

The shoulder girdle has a complex motion. Many researchers have taken interest in the complex motions of the shoulder and investigated it by various methodologies. We have recently been able to evaluate 3D kinematics of the shoulder with the aid of 3D motion analysis systems such as 3D motion capture system, 3D MRI, and 2D/3D registration technique. In this chapter, we summarize the advantage and disadvantage of each 3D motion analysis system and introduce the results of the shoulder kinematics previously reported.

Keywords

Translation Rotation 3D motion capture system 3D MRI 2D/3D registration technique 

Supplementary material

Video 3.1

(AVI 2292 kb)

Video 3.2

(AVI 7022 kb)

References

  1. 1.
    Codman EA (1984) Chapter 2: Normal motions of the shoulder joint. In: The shoulder: rupture of the supraspinatus tendon and other lesions in or about the subacromial bursa. G. Miller & Co. Medical Publishers, Inc, New York, pp 32–64Google Scholar
  2. 2.
    Inman VT, Saunders JB, Abbott LC (1944) Observations of the function of the shoulder joint. J Bone Joint Surg 26:1–30Google Scholar
  3. 3.
    Kapandji IA (1985) Chapter 1: the shoulder. In: Ogishima H, Shimada T (eds) The physiology of the joints, vol 1, 5th edn. Ishiyaku Publishers, Inc, Tokyo, pp 10–77Google Scholar
  4. 4.
    Rafii M, Firooznia H, Golimbu C et al (1986) CT arthrography of capsular structures of the shoulder. AJR Am J Roentgenol 146:361–367PubMedCrossRefGoogle Scholar
  5. 5.
    Coumas JM, Waite RJ, Goss TP et al (1992) CT and MR evaluation of the labral capsular ligamentous complex of the shoulder. AJR Am J Roentgenol 158:591–597PubMedCrossRefGoogle Scholar
  6. 6.
    Sans N, Richardi G, Railhac JJ et al (1996) Kinematic MR imaging of the shoulder: normal patterns. AJR Am J Roentgenol 167:1517–1522PubMedCrossRefGoogle Scholar
  7. 7.
    Tokuda O, Kunihiro Y, Matsunaga N (2002) Kinematic MRI of the normal shoulder using a specially designed positioning device. J Comput Assist Tomogr 26:849–854PubMedCrossRefGoogle Scholar
  8. 8.
    Bonutti PM, Norfray JF, Friedman RJ et al (1993) Kinematic MRI of the shoulder. J Comput Assist Tomogr 17:666–669PubMedCrossRefGoogle Scholar
  9. 9.
    Allmann KH, Uhl M, Gufler H et al (1997) Cine-MR imaging of the shoulder. Acta Radiol 38:1043–1046PubMedCrossRefGoogle Scholar
  10. 10.
    Wu G, van der Helm FC, Veeger HE et al (2005) ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion. Part II: shoulder, elbow, wrist and hand. J Biomech 38:981–992PubMedCrossRefGoogle Scholar
  11. 11.
    Takagi Y, Oi T, Tanaka H et al (2014) Increased horizontal shoulder abduction is associated with an increase in shoulder joint load in baseball pitching. J Shoulder Elbow Surg 23:1757–1762PubMedCrossRefGoogle Scholar
  12. 12.
    de Groot JH (1997) The variability of shoulder motions recorded by means of palpation. Clin Biomech 12:461–472CrossRefGoogle Scholar
  13. 13.
    Karduna AR, McClure PW, Michener LA et al (2001) Dynamic measurements of three-dimensional scapular kinematics: a validation study. J Biomech Eng 123:184–190PubMedCrossRefGoogle Scholar
  14. 14.
    Ludewig PM, Behrens SA, Meyer SM et al (2004) Three-dimensional clavicular motion during arm elevation: reliability and descriptive data. J Orthop Sports Phys Ther 34:140–149PubMedCrossRefGoogle Scholar
  15. 15.
    Hamming D, Braman JP, Phadke V et al (2012) The accuracy of measuring glenohumeral motion with a surface humeral cuff. J Biomech 45:1161–1168PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ishii T, Mukai Y, Hosono N et al (2004) Kinematics of the upper cervical spine in rotation: in vivo three-dimensional analysis. Spine 29:E139–E144PubMedCrossRefGoogle Scholar
  17. 17.
    Moritomo H, Goto A, Sato Y et al (2003) The triquetrum-hamate joint: an anatomic and in vivo three-dimensional kinematic study. J Hand Surg [Am] 28:797–805CrossRefGoogle Scholar
  18. 18.
    Goto A, Moritomo H, Murase T et al (2004) In vivo elbow biomechanical analysis during flexion: three-dimensional motion analysis using magnetic resonance imaging. J Shoulder Elbow Surg 13:441–447PubMedCrossRefGoogle Scholar
  19. 19.
    Moritomo H, Murase T, Goto A et al (2006) In vivo three-dimensional kinematics of the midcarpal joint of the wrist. J Bone Joint Surg Am 88:611–621PubMedGoogle Scholar
  20. 20.
    Oka K, Doi K, Suzuki K et al (2006) In vivo three-dimensional motion analysis of the forearm with radioulnar synostosis treated by the Kanaya procedure. J Orthop Res 24:1028–1035PubMedCrossRefGoogle Scholar
  21. 21.
    Fujii R, Sakaura H, Mukai Y et al (2007) Kinematics of the lumbar spine in trunk rotation: in vivo three-dimensional analysis using magnetic resonance imaging. Eur Spine J 16:1867–1874PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Fujimori T, Iwasaki M, Nagamoto Y et al (2012) Kinematics of the thoracic spine in trunk rotation: in vivo 3-dimensional analysis. Spine 37:E1318–E1328PubMedCrossRefGoogle Scholar
  23. 23.
    Fujimori T, Iwasaki M, Nagamoto Y et al (2012) Three-dimensional measurement of intervertebral range of motion in ossification of the posterior longitudinal ligament: are there mobile segments in the continuous type? J Neurosurg Spine 17:74–81PubMedCrossRefGoogle Scholar
  24. 24.
    Nagamoto Y, Ishii T, Iwasaki M et al (2012) Three-dimensional motion of the uncovertebral joint during head rotation. J Neurosurg Spine 17:327–333PubMedCrossRefGoogle Scholar
  25. 25.
    Banks SA, Hodge WA (1996) Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Trans Biomed Eng 43:638–649PubMedCrossRefGoogle Scholar
  26. 26.
    Yamazaki T, Watanabe T, Nakajima Y et al (2004) Improvement of depth position in 2-D/3-D registration of knee implants using single-plane fluoroscopy. IEEE Trans Med Imaging 23:602–612PubMedCrossRefGoogle Scholar
  27. 27.
    Nishinaka N, Tsutsui H, Mihara K et al (2008) Determination of in vivo glenohumeral translation using fluoroscopy and shape-matching techniques. J Shoulder Elbow Surg 17:319–322PubMedCrossRefGoogle Scholar
  28. 28.
    Kon Y, Nishinaka N, Gamada K et al (2008) The influence of handheld weight on the scapulohumeral rhythm. J Shoulder Elbow Surg 17:943–946PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuki K, Matsuki KO, Mu S et al (2011) In vivo 3-dimensional analysis of scapular kinematics: comparison of dominant and nondominant shoulders. J Shoulder Elbow Surg 20:659–665PubMedCrossRefGoogle Scholar
  30. 30.
    Matsuki K, Matsuki KO, Yamaguchi S et al (2012) Dynamic in vivo glenohumeral kinematics during scapular plane abduction in healthy shoulders. J Orthop Sports Phys Ther 42:96–104PubMedCrossRefGoogle Scholar
  31. 31.
    Zhu Z, Massimini DF, Wang G et al (2012) The accuracy and repeatability of an automatic 2D-3D fluoroscopic image-model registration technique for determining shoulder joint kinematics. Med Eng Phys 34:1303–1309PubMedCrossRefGoogle Scholar
  32. 32.
    Bey MJ, Zauel R, Brock SK et al (2006) Validation of a new model-based tracking technique for measuring three-dimensional, in vivo glenohumeral joint kinematics. J Biomech Eng 128:604–609PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Massimini DF, Warner JJ, Li G (2011) Non-invasive determination of coupled motion of the scapula and humerus: an in-vitro validation. J Biomech 44:408–412PubMedCrossRefGoogle Scholar
  34. 34.
    Karduna AR, McClure PW, Michener LA (2000) Scapular kinematics: effects of altering the Euler angle sequence of rotations. J Biomech 33:1063–1068PubMedCrossRefGoogle Scholar
  35. 35.
    Stokdijk M, Eilers PH, Nagels J et al (2003) External rotation in the glenohumeral joint during elevation of the arm. Clin Biomech 18:296–302CrossRefGoogle Scholar
  36. 36.
    Ludewig PM, Cook TM (2000) Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther 80:276–291PubMedGoogle Scholar
  37. 37.
    Rundquist PJ, Anderson DD, Guanche CA et al (2003) Shoulder kinematics in subjects with frozen shoulder. Arch Phys Med Rehabil 84:1473–1479PubMedCrossRefGoogle Scholar
  38. 38.
    Senk M, Cheze L (2006) Rotation sequence as an important factor in shoulder kinematics. Clin Biomech 21:S3–S8CrossRefGoogle Scholar
  39. 39.
    Kinzel GL, Hall AS Jr, Hillberry BM (1972) Measurement of the total motion between two body segments. I. Analytical development. J Biomech 5:93–105PubMedCrossRefGoogle Scholar
  40. 40.
    Panjabi MM, Krag MH, Goel VK (1981) A technique for measurement and description of three-dimensional six degree-of-freedom motion of a body joint with an application to the human spine. J Biomech 14:447–460PubMedCrossRefGoogle Scholar
  41. 41.
    Morrey BF, Itoi E, An KN (1998) Biomechanics of the shoulder. In: Rockwood CA, Matsen FA (eds) The shoulder, vol 1, 2nd edn. WB Saunders Company, Philadelphia, pp 233–276Google Scholar
  42. 42.
    Sahara W, Sugamoto K, Murai M et al (2006) 3D kinematic analysis of the acromioclavicular joint during arm abduction using vertically open MRI. J Orthop Res 24:1823–1831PubMedCrossRefGoogle Scholar
  43. 43.
    Poppen NK, Walker PS (1976) Normal and abnormal motion of the shoulder. J Bone Joint Surg Am 58:195–201PubMedCrossRefGoogle Scholar
  44. 44.
    McClure PW, Michener LA, Sennett BJ et al (2001) Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg 10:269–277PubMedCrossRefGoogle Scholar
  45. 45.
    Freedman L, Munro RR (1966) Abduction of the arm in the scapular plane: scapular and glenohumeral movements. A roentgenographic study. J Bone Joint Surg Am 48:1503–1510PubMedCrossRefGoogle Scholar
  46. 46.
    Giphart JE, Brunkhorst JP, Horn NH et al (2013) Effect of plane of arm elevation on glenohumeral kinematics: a normative biplane fluoroscopy study. J Bone Joint Surg Am 95:238–245PubMedCrossRefGoogle Scholar
  47. 47.
    Bagg SD, Forrest WJ (1988) A biomechanical analysis of scapular rotation during arm abduction in the scapular plane. Am J Phys Med Rehabil 67:238–245PubMedGoogle Scholar
  48. 48.
    Meskers CG, Vermeulen HM, de Groot JH et al (1998) 3D shoulder position measurements using a six-degree-of-freedom electromagnetic tracking device. Clin Biomech 13:280–292CrossRefGoogle Scholar
  49. 49.
    Ludewig PM, Phadke V, Braman JP et al (2009) Motion of the shoulder complex during multiplanar humeral elevation. J Bone Joint Surg Am 91:378–389PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Borstad JD, Ludewig PM (2002) Comparison of scapular kinematics between elevation and lowering of the arm in the scapular plane. Clin Biomech 17:650–659CrossRefGoogle Scholar
  51. 51.
    Yoshizaki K, Hamada J, Tamai K et al (2009) Analysis of the scapulohumeral rhythm and electromyography of the shoulder muscles during elevation and lowering: comparison of dominant and nondominant shoulders. J Shoulder Elbow Surg 18:756–763PubMedCrossRefGoogle Scholar
  52. 52.
    Yano Y, Hamada J, Tamai K et al (2010) Different scapular kinematics in healthy subjects during arm elevation and lowering: glenohumeral and scapulothoracic patterns. J Shoulder Elbow Surg 19:209–215PubMedCrossRefGoogle Scholar
  53. 53.
    Dayanidhi S, Orlin M, Kozin S et al (2005) Scapular kinematics during humeral elevation in adults and children. Clin Biomech 20:600–606CrossRefGoogle Scholar
  54. 54.
    Habechian FA, Fornasari GG, Sacramento LS et al (2014) Differences in scapular kinematics and scapulohumeral rhythm during elevation and lowering of the arm between typical children and healthy adults. J Electromyogr Kinesiol 24:78–83PubMedCrossRefGoogle Scholar
  55. 55.
    Endo K, Yukata K, Yasui N (2004) Influence of age on scapulo-thoracic orientation. Clin Biomech 19:1009–1013CrossRefGoogle Scholar
  56. 56.
    Talkhani IS, Kelly CP (2001) Movement analysis of asymptomatic normal shoulders: a preliminary study. J Shoulder Elbow Surg 10:580–584PubMedCrossRefGoogle Scholar
  57. 57.
    McQuade KJ, Smidt GL (1998) Dynamic scapulohumeral rhythm: the effects of external resistance during elevation of the arm in the scapular plane. J Orthop Sports Phys Ther 27:125–133PubMedCrossRefGoogle Scholar
  58. 58.
    de Groot JH, van Woensel W, van der Helm FC (1999) Effect of different arm loads on the position of the scapula in abduction postures. Clin Biomech 14:309–314CrossRefGoogle Scholar
  59. 59.
    Michiels I, Grevenstein J (1995) Kinematics of shoulder abduction in the scapular plane on the influence of abduction velocity and external load. Clin Biomech 10:137–143CrossRefGoogle Scholar
  60. 60.
    Sugamoto K, Harada T, Machida A et al (2002) Scapulohumeral rhythm: relationship between motion velocity and rhythm. Clin Orthop 401:119–124PubMedCrossRefGoogle Scholar
  61. 61.
    Browne AO, Hoffmeyer P, Tanaka S et al (1990) Glenohumeral elevation studied in three dimensions. J Bone Joint Surg Br 72:843–845PubMedGoogle Scholar
  62. 62.
    Phadke V, Braman JP, LaPrade RF et al (2011) Comparison of glenohumeral motion using different rotation sequences. J Biomech 44:700–705PubMedCrossRefGoogle Scholar
  63. 63.
    Beaulieu CF, Hodge DK, Bergman AG et al (1999) Glenohumeral relationships during physiologic shoulder motion and stress testing: initial experience with open MR imaging and active imaging-plane registration. Radiology 212:699–705PubMedCrossRefGoogle Scholar
  64. 64.
    Graichen H, Stammberger T, Bonel H et al (2000) Glenohumeral translation during active and passive elevation of the shoulder: a 3D open-MRI study. J Biomech 33:609–613PubMedCrossRefGoogle Scholar
  65. 65.
    Sahara W, Sugamoto K, Murai M et al (2007) The three-dimensional motions of glenohumeral joint under semi-loaded condition during arm abduction using vertically open MRI. Clin Biomech 22:304–312CrossRefGoogle Scholar
  66. 66.
    Nobuhara K (2012) Biomechanics of the shoulder. In: Nobuhara K (ed) The shoulder: its function and clinical aspects, 4th edn. Igaku-Shoin Ltd, Tokyo, pp 47–83Google Scholar
  67. 67.
    Soslowsky LJ, Flatow EL, Bigliani LU et al (1992) Quantitation of in situ contact areas at the glenohumeral joint: a biomechanical study. J Orthop Res 10:524–534PubMedCrossRefGoogle Scholar
  68. 68.
    Warner JJ, Bowen MK, Deng XH et al (1998) Articular contact patterns of the normal glenohumeral joint. J Shoulder Elbow Surg 7:381–388PubMedCrossRefGoogle Scholar
  69. 69.
    Neer CS 2nd (1972) Anterior acromioplasty for the chronic impingement syndrome in the shoulder: a preliminary report. J Bone Joint Surg Am 54:41–50PubMedCrossRefGoogle Scholar
  70. 70.
    Weiner DS, Macnab I (1970) Superior migration of the humeral head. A radiological aid in the diagnosis of tears of the rotator cuff. J Bone Joint Surg Br 52:524–527PubMedGoogle Scholar
  71. 71.
    Graichen H, Bonel H, Stammberger T et al (1999) Subacromial space width changes during abduction and rotation: a 3-D MR imaging study. Surg Radiol Anat 21:59–64PubMedCrossRefGoogle Scholar
  72. 72.
    Giphart JE, van der Meijden OA, Millett PJ (2012) The effects of arm elevation on the 3-dimensional acromiohumeral distance: a biplane fluoroscopy study with normative data. J Shoulder Elbow Surg 21:1593–1600PubMedCrossRefGoogle Scholar
  73. 73.
    Yanai T, Fuss FK, Fukunaga T (2006) In vivo measurements of subacromial impingement: substantial compression develops in abduction with large internal rotation. Clin Biomech 21:692–700CrossRefGoogle Scholar
  74. 74.
    Yamamoto N, Muraki T, Sperling JW et al (2010) Contact between the coracoacromial arch and the rotator cuff tendons in nonpathologic situations: a cadaveric study. J Shoulder Elbow Surg 19:681–687PubMedCrossRefGoogle Scholar
  75. 75.
    Xu X, McGorry RW, Lin JH (2014) The accuracy of an external frame using ISB recommended rotation sequence to define shoulder joint angle. Gait Posture 39:662–668PubMedCrossRefGoogle Scholar
  76. 76.
    Doorenbosch CA, Harlaar J, Veeger DH (2003) The globe system: an unambiguous description of shoulder positions in daily life movements. J Rehabil Res Dev 40:147–155PubMedCrossRefGoogle Scholar
  77. 77.
    Masuda T, Ishida A, Cao L et al (2008) A proposal for a new definition of the axial rotation angle of the shoulder joint. J Electromyogr Kinesiol 18:154–159PubMedCrossRefGoogle Scholar
  78. 78.
    Sahara W, Sugamoto K, Murai M et al (2007) Three-dimensional clavicular and acromioclavicular rotations during arm abduction using vertically open MRI. J Orthop Res 25:1243–1249PubMedCrossRefGoogle Scholar
  79. 79.
    Fukuda K, Craig EV, An KN et al (1986) Biomechanical study of the ligamentous system of the acromioclavicular joint. J Bone Joint Surg Am 68:434–440PubMedCrossRefGoogle Scholar
  80. 80.
    Debski RE, Parsons IM 3rd, Fenwick J et al (2000) Ligament mechanics during three degree-of-freedom motion at the acromioclavicular joint. Ann Biomed Eng 28:612–618PubMedCrossRefGoogle Scholar
  81. 81.
    Debski RE, Parsons IM 4th, Woo SL et al (2001) Effect of capsular injury on acromioclavicular joint mechanics. J Bone Joint Surg Am 83:1344–1351PubMedCrossRefGoogle Scholar
  82. 82.
    Seo YJ, Yoo YS, Noh KC et al (2012) Dynamic function of coracoclavicular ligament at different shoulder abduction angles: a study using a 3-dimensional finite element model. Arthroscopy 28:778–787PubMedCrossRefGoogle Scholar
  83. 83.
    Kim YS, Yoo YS, Jang SW et al (2015) In vivo analysis of acromioclavicular joint motion after hook plate fixation using three-dimensional computed tomography. J Shoulder Elbow Surg. doi: 10.1016/j.jse.2014.12.012 Google Scholar
  84. 84.
    Howell SM, Galinat BJ, Renzi AJ et al (1988) Normal and abnormal mechanics of the glenohumeral joint in the horizontal plane. J Bone Joint Surg Am 70:227–232PubMedCrossRefGoogle Scholar
  85. 85.
    Schiffern SC, Rozencwaig R, Antoniou J et al (2002) Anteroposterior centering of the humeral head on the glenoid in vivo. Am J Sports Med 30:382–387PubMedGoogle Scholar
  86. 86.
    von Eisenhart-Rothe RM, Jager A, Englmeier KH et al (2002) Relevance of arm position and muscle activity on three-dimensional glenohumeral translation in patients with traumatic and atraumatic shoulder instability. Am J Sports Med 30:514–522Google Scholar
  87. 87.
    Koishi H, Goto A, Tanaka M et al (2011) In vivo three-dimensional motion analysis of the shoulder joint during internal and external rotation. Int Orthop 35:1503–1509PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yamamoto N, Itoi E, Abe H et al (2007) Contact between the glenoid and the humeral head in abduction, external rotation, and horizontal extension: a new concept of glenoid track. J Shoulder Elbow Surg 16:649–656PubMedCrossRefGoogle Scholar
  89. 89.
    Omori Y, Yamamoto N, Koishi H et al (2014) Measurement of the glenoid track in vivo as investigated by 3-dimensional motion analysis using open MRI. Am J Sports Med 42:1290–1295PubMedCrossRefGoogle Scholar
  90. 90.
    Itoi E, Lee SB, Berglund LJ et al (2000) The effect of a glenoid defect on anteroinferior stability of the shoulder after Bankart repair: a cadaveric study. J Bone Joint Surg Am 82:35–46PubMedCrossRefGoogle Scholar
  91. 91.
    Halder AM, Kuhl SG, Zobitz ME et al (2001) Effects of the glenoid labrum and glenohumeral abduction on stability of the shoulder joint through concavity-compression: an in vitro study. J Bone Joint Surg Am 83:1062–1069PubMedCrossRefGoogle Scholar
  92. 92.
    Habermeyer P, Schuller U, Wiedemann E (1992) The intra-articular pressure of the shoulder: an experimental study on the role of the glenoid labrum in stabilizing the joint. Arthroscopy 8:166–172PubMedCrossRefGoogle Scholar
  93. 93.
    Itoi E, Motzkin NE, Browne AO et al (1993) Intraarticular pressure of the shoulder. Arthroscopy 9:406–413PubMedCrossRefGoogle Scholar
  94. 94.
    Howell SM, Galinat BJ (1989) The glenoid-labral socket. A constrained articular surface. Clin Orthop 243:122–125PubMedGoogle Scholar
  95. 95.
    Lazarus MD, Sidles JA, Harryman DT 2nd et al (1996) Effect of a chondral-labral defect on glenoid concavity and glenohumeral stability. A cadaveric model. J Bone Joint Surg Am 78:94–102PubMedCrossRefGoogle Scholar
  96. 96.
    Metcalf MH, Pon JD, Harryman DT 2nd et al (2001) Capsulolabral augmentation increases glenohumeral stability in the cadaver shoulder. J Shoulder Elbow Surg 10:532–538PubMedCrossRefGoogle Scholar
  97. 97.
    O’Connell PW, Nuber GW, Mileski RA et al (1990) The contribution of the glenohumeral ligaments to anterior stability of the shoulder joint. Am J Sports Med 18:579–584PubMedCrossRefGoogle Scholar
  98. 98.
    Warner JJ, Deng XH, Warren RF et al (1992) Static capsuloligamentous restraints to superior-inferior translation of the glenohumeral joint. Am J Sports Med 20:675–685PubMedCrossRefGoogle Scholar
  99. 99.
    O’Brien SJ, Schwartz RS, Warren RF et al (1995) Capsular restraints to anterior-posterior motion of the abducted shoulder: a biomechanical study. J Shoulder Elbow Surg 4:298–308PubMedCrossRefGoogle Scholar
  100. 100.
    Turkel SJ, Panio MW, Marshall JL et al (1981) Stabilizing mechanisms preventing anterior dislocation of the glenohumeral joint. J Bone Joint Surg Am 63:1208–1217PubMedCrossRefGoogle Scholar
  101. 101.
    Yang C, Goto A, Sahara W et al (2010) In vivo three-dimensional evaluation of the functional length of glenohumeral ligaments. Clin Biomech 25:137–141CrossRefGoogle Scholar
  102. 102.
    Shibano K, Koishi H, Futai K et al (2014) Effect of Bankart repair on the loss of range of motion and the instability of the shoulder joint for recurrent anterior shoulder dislocation. J Shoulder Elbow Surg 23:888–894PubMedCrossRefGoogle Scholar
  103. 103.
    Massimini DF, Boyer PJ, Papannagari R et al (2012) In-vivo glenohumeral translation and ligament elongation during abduction and abduction with internal and external rotation. J Orthop Surg Res 7:29PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  1. 1.Department of OrthopaedicsOsaka University Graduate School of MedicineSuita, OsakaJapan
  2. 2.Department of Orthopaedic Biomaterial ScienceOsaka University Graduate School of MedicineOsakaJapan

Personalised recommendations