General Introduction

  • Takahiro NagataEmail author
Part of the NIMS Monographs book series (NIMSM)


The integrated circuit technologies stand at a crucial turning point in establishing the fundamentals for further advancement. To overcome the performance limits of conventional materials such as SiO2 gate, polycrystalline Si gate, and Al wiring, it is necessary to develop a new material with a new functionality that is not found in Si devices up to now, such as nonvolatile memory function.


  1. 1.
    Minami T (2005) Transparent conducting oxide semiconductors for transparent electrodes. Semicond Sci Technol 20:S35. Scholar
  2. 2.
    Ginley DS, Bright C (2000) Transparent conducting oxides. MRS Bull 25:15. Scholar
  3. 3.
    Hosono H, Kikuchi N, Ueda N, Kawazoe H (1996) Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples. J Non-Cryst Solids 198–200:165. Scholar
  4. 4.
    Nomura K, Ohta H, Ueda K, Kamiya T, Hirano M, Hosono H (2003) Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 300:1269. Scholar
  5. 5.
    Kohnke EE (1962) Electrical and optical properties of natural stannic oxide crystals. J Phys Chem Solids 23:1557. Scholar
  6. 6.
    Nagasawa M, Shionoya S, Makishim S (1965) Vapor reaction growth of SnO2 single crystals and their properties. Jpn J Appl Phys 4:195. Scholar
  7. 7.
    Choudhary J, Ogale SB, Shinde SR, Kulkarni VN, Vendatesan T, Harshavardhan KS, Strikovski M, Hannoyer B (2004) Pulsed-electron-beam deposition of transparent conducting SnO2 films and study of their properties. Appl Phys Lett 84:1483. Scholar
  8. 8.
    Batzill M, Katsiev K, Burst JM, Diebold U, Chaka AM, Delley B (2005) Gas-phase-dependent properties of SnO2 (110), (100), and (101) single-crystal surfaces: structure, composition, and electronic properties. Phys Rev B 72:165414. Scholar
  9. 9.
    Anisimov OV, Gaman VI, Maksimova NK, Mazalov SM, Chernikov EV (2006) Electrical and gas-sensitive properties of a resistive thin-film sensor based on tin oxide. Semiconductors 40:704. Scholar
  10. 10.
    Kim H, Pique A, Horwitz JS, Mattoussi H, Murata H, Kafafi ZH, Chrisey DB (1999) Indium tin oxide thin films for organic light-emitting devices. Appl Phys Lett 74:3444. Scholar
  11. 11.
    von Wenckstern H, Splith D, Lanzinger S, Schmidt F, Müller S, Schlupp P, Karsthof R, Grundmann M (2015) pn-hetero diodes with n-type In2O3. Adv Electr Mater 1:1400026. Scholar
  12. 12.
    Pagnia H, Sotnik N (1988) Bistable switching in electroformed metal–insulator–metal devices. Phys Stat Sol (a) 108:11. Scholar
  13. 13.
    Chudnovskii FA, Odynets LL, Pergament AL, Stefanovich GB (1996) Electroforming and switching in oxides of transition metals: the role of metal–insulator transition in the switching mechanism. J Solid State Chem 122:95. Scholar
  14. 14.
    Asamitsu A, Tomioka Y, Kuwahara H, Tokura Y (1997) Current switching of resistive states in magnetoresistive manganites. Nature 388:50. Scholar
  15. 15.
    Fors R, Khartsev SI, Grishin AM (2005) Giant resistance switching in metal-insulator-manganite junctions: evidence for Mott transition. Phys Rev B 71:045305. Scholar
  16. 16.
    Kim DS, Kim YH, Lee CE, Kim YT (2006) Colossal electroresistance mechanism in a Au∕Pr0.7Ca0.3MnO3∕Pt sandwich structure: evidence for a Mott transition. Phys Rev B 74:174430.
  17. 17.
    Meijer GI, Staub U, Janousch M, Johnson SL, Delley B, Neisius T (2005) Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Phys Rev B 72:155102. Scholar

Copyright information

© National Institute for Materials Science, Japan 2020

Authors and Affiliations

  1. 1.Research Center for Functional MaterialsNational Institute for Materials ScienceTsukubaJapan

Personalised recommendations