Skip to main content

Underground Temperature Measurements as a Tool for Volcanic Activity Monitoring in the Island of Tenerife, Canary Islands

  • Chapter
  • First Online:
Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume III

Abstract

The spatial distribution of groundwater temperatures in the volcanic island of Tenerife, Canary Islands, has been inferred through measurements of water temperatures collected in the vast network of wells and subhorizontal tunnels, locally called “galleries,” which constitutes the main water supply of the island. The spatial coverage of the network of galleries allows us to reach from depth almost any geological feature of the island. The complex spatial distribution of temperatures in the interior of Tenerife is the result of the complex geological evolution of the island. Groundwater temperatures are greatly affected by groundwater flow and are considerably warmer in those galleries located in areas where water circulation is reduced due to the low permeability of materials and/or to the low infiltration rate of cooling meteoric water. In this sense, groundwater temperature should be characterized in quiescent conditions (background level), in order to facilitate monitoring changes in heat flow, such as those induced by ascending gases expected with an increase in volcanic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ablay, G. and Hürlimann, M. (2000), Evolution of north flank of Tenerife by recurrent giant landslide processes, J. Volcanol. Geoth. Res. 103, 135–159.

    Article  Google Scholar 

  • Albert, J.F., Díez Gil, J.L., Valentín, A., García de la noceda, C., and Araña, V. (1989), El sistema fumaroliano del Teide. In Los volcanes y la caldera del Parque Nacional del Teide (Tenerife, Islas Canarias), Araña, V. y Coello, J. Ed. ICONA, Madrid. 347–358 pp.

    Google Scholar 

  • Ancochea, E., Huertas, M.J., Cantagrel, J.M., Coello, J., Fúster, J.M., Arnaud, N., and Ibarrola, E. (1999), Evolution of the Cañadas edifice and its implications for the origin of the Cañadas Caldera (Tenerife, Canary Islands), J. Volcanol. Geoth. Res. 88, 177–199.

    Article  Google Scholar 

  • Badrudin, M. (1994), Kelut volcano monitoring: Hazards, mitigation and changes in water chemistry prior to the 1990 eruption, Geochem. J. 28, 233–241.

    Google Scholar 

  • Bonfanti, P., DAlessandro, W., Dongarr, G., Parello, F., Valenza, M. (1996), Medium-term anomalies in groundwater temperature before 1991–1993 Mt. Etna eruption, J. Volcanol. Geoth. Res. 73, 303–308.

    Article  Google Scholar 

  • Bravo, T., Coello, J., and Bravo, J. (1976), Areas de emanaciones gaseosas y anomalías térmicas en la provincia de Santa Cruz de Tenerife (Islas Canarias), II Asamb. Nac. Geod. Geof., 2235–2244.

    Google Scholar 

  • Cabrera, M.P. and Hernández-Pacheco, A. (1987), Las erupciones históricas de Tenerife (Canarias) en sus aspectos vulcanológico, petrológico y geoquímico, Rev. Mat. Proc. Geol. V, 143–182.

    Google Scholar 

  • Cantagrel, J.M., Arnaud, N.O., Ancochea, E., Fúster, J.M., and Huertas, M.J. (1999), Repeated debris avalanches on Tenerife and genesis of Las Cañadas caldera wall (Canary Islands), Geology 27, 739–742.

    Article  Google Scholar 

  • Carracedo, J.C., Paterne, M., Guillou, H., Pérez Torrado, F.J., Paris, R., Rodríguez Badiola, E., and Hansen, A. (2003), Dataciones radiométricas (14 C y K/Ar) del Teide y del rift noroeste, Tenerife, Islas Canarias, Estudios Geol. 59, 15–29.

    Google Scholar 

  • Coello, J. (1976), Las series volcánicas en subsuelos de Tenerife, Estudios Geol. 29, 491–512.

    Google Scholar 

  • Custodio, E. (1987), Hydrogeochemistry of Tenerife Island. In Simposio Canarias 2000, Tenerife, Spain.

    Google Scholar 

  • Eff-Darwich, A., Martín Luis, M.C., Quesada, M.L., De la Nuez, J., and Coello, J. (2002), Variations on the concentration of 222 Rn in the subsurface of the volcanic island of Tenerife, Canary Islands, Geophys. Res. Lett. 29, 26.

    Article  Google Scholar 

  • Farrujia, I., Delgado, P., and Bethencourt, J. (1994), Calidad y contaminación de las aguas subterráneas de Tenerife en el marco de la planificación hidrológica, Congr. Análisis y Evolución de la Contaminación de las Aguas Subterráneas, Alcalá de Henares (Madrid), Tomo II, 397-416 pp.

    Google Scholar 

  • Federico, C., Aiuppa, A., Allard, P., Bellomo, S., Jean-Baptiste, P., Parello, F., and Valenza, M. (2002), Magma-derived gas influx and water-rock interactions in the volcanic aquifer of Mt. Vesuvius, Italy, Geochim. Cosmochim. Acta 66, 963–981.

    Article  Google Scholar 

  • Guillou, H., Carracedo, J.C., Paris, R., and Pérez Torrado, F.J. (2004), Implications for the early shield-stage evolution of Tenerife from K/Ar ages and magnetic stratigraphy, Earth Planet. Sci. Lett. 222, 599–614.

    Article  Google Scholar 

  • Huertas, M.J., Arnaud, N.O., Ancochea, E., Cantagrel, J.M., and Fúster, J.M. (2002), 40 Ar/39 Ar stratigraphy of pyroclastic units from the Cañadas Volcanic Edifice (Tenerife, Canary Islands) and their bearing on the structural evolution, J. Volcanol. Geoth. Res. 115, 351–365.

    Article  Google Scholar 

  • Martí, J., Mitjavila, J., and Araña, V. (1994), Stratigraphy, structure and geochronology of the Cañadas Caldera (Tenerife, Canary Islands), Geol. Mag. 131(6), 715–727.

    Article  Google Scholar 

  • Martin-Del Pozzo, A.L., Aceves, F., Espinasa, R., Aguayo, A., Inguaggiato, S., Morales, P., and Cienfuegos, E. (2002), Influence of volcanic activity on spring water chemistry at Popocatepetl Volcano, Mexico, Chem. Geol. 190, 207.

    Article  Google Scholar 

  • Martín, M.C., Quesada, M.L., Eff-Darwich, A., De la Nuez, J., Coello, J., Ahijado, A., Casillas, R., and Soler, V. (2002), A new strategy to measure radon in an active volcanic island (Tenerife, Canary Islands), Environmental Geology 43, 72–78.

    Article  Google Scholar 

  • Mezcua, J., Buforn, E., Udías, A., and Rueda, J. (1992), Seismotectonics of the Canary Islands, Tectonophysics, 208, 447–452.

    Article  Google Scholar 

  • Navarro, J.M. (1991), Plan Hidrológico de Tenerife. Cabildo Insular de Tenerife.

    Google Scholar 

  • Pérez, N.M., Nakai, S., Wakita, H., Hernández, P.A., and Salazar, J.M. (1996), Helium-3 emission in and around Teide volcano, Tenerife, Canary Islands, Spain, Geophysical Rese. Lett., 23, 3531.

    Article  Google Scholar 

  • Sato, T., Wakita, H., Notsu, K., and Igarashi, G. (1992), Anomalous hot spring water changes: Possible precursors of the 1989 volcanic eruption off the east coast of the Izu Peninsula, Geochem. J. 26, 73–83.

    Google Scholar 

  • Sigurdsson, H. (1977), Chemistry of the crater lake during the 1971–72 Soufrière eruption, J. Volcanol, Geoth. Res. 2, 165–186.

    Article  Google Scholar 

  • Soler, V., Castro, J.A., Viñas, R.T., Eff-Darwich, A., Sánchez, S., Hillarie-Marcel, C., Farrujia, I., Coello, J., De la Nuez, J., Martín, M.C., Quesada, M.L., and Santana, E. (2004), High CO 2 levels in boreholes at El Teide volcano complex (Tenerife, Canary Islands): Implications for volcanic activity monitoring, Pure Appl. Geophys, 161, 1519–1532.

    Article  Google Scholar 

  • Tedesco, D., Monitoring fluids and gases at active volcanoes, Monitoring active volcanoes (ed, McGuire, B., Kilburn, C., and Murray, J.) (UCL, London (1995)) pp. 315–345.

    Google Scholar 

  • Valentín, A., Albert-Beltrán, J.F., and Díez, J.L. (1990), Geochemical and geothermal constraints on magma bodies associated with historic activity, Tenerife, J. Volcanol. Geotherm. Rese. 44, 251–264.

    Article  Google Scholar 

  • Violette, S., Ledoux, E., Goblet, P., and Carbonnel, J.P. (1997), Hydrologic and thermal modelling of an active volcano: The “Piton de la Fournaise”, Reunion Island, Journal of Hydrology 191,1–4, 37–63.

    Article  Google Scholar 

  • Walter, T.R., Troll, V.R., Cailleau, B., Belousov, A, Schmincke, H.U., Amelung, F., and v.d. Bogaard, P. (2005), Rift zone reorganization through flank instability in ocean island volcanoes: An example from Tenerife, Canary Islands, Bull. Volcanol. 67, 281–291.

    Article  Google Scholar 

  • Yamashina, K. and Matsushima, T. (1999), Ground temperature change observed at Unzen Volcano associated with the 1990–1995 eruption, J. Volcanol. Geotherm. Res. 89, 65–71

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag, Basel

About this chapter

Cite this chapter

Eff-Darwich, A. et al. (2008). Underground Temperature Measurements as a Tool for Volcanic Activity Monitoring in the Island of Tenerife, Canary Islands. In: Pérez, N.M., Gurrieri, S., King, CY., Taran, Y. (eds) Terrestrial Fluids, Earthquakes and Volcanoes: The Hiroshi Wakita Volume III. Pageoph Topical Volumes. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8738-9_9

Download citation

Publish with us

Policies and ethics