Crystallographic and cryo EM analysis of virion-receptor interactions

  • M. G. Rossmann
  • N. H. Olson
  • P. R. Kolatkar
  • M. A. Oliveira
  • R. H. Cheng
  • J. M. Greve
  • A. McClelland
  • T. S. Baker
Conference paper
Part of the Archives of Virology Supplementum book series (ARCHIVES SUPPL, volume 9)


Cryoelectron microscopy has been used to determine the first structure of a virus when complexed with its glycoprotein cellular receptor. Human rhinovirus 16 (HRV16) complexed with the two amino-terminal, immunoglobulin-like domains of the intercellular adhesion molecule-1 (ICAM-1) shows that ICAM-1 binds into the 12 Å deep “canyon” on the surface of the virus. This is consistent with the prediction that the viral receptor attachment site lies in a cavity inaccessible to the host’s antibodies. The atomic structures of HRV14 and CD4, homologous to HRV16 and ICAM-1, showed excellent correspondence with observed density, thus establishing the virus-receptor interactions.


Cryoelectron Microscopy Human Rhinovirus Empty Capsid Canyon Floor Poliovirus Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abraham G, Colonno RJ (1984) Many rhinovirus serotypes share the same cellular receptor. J Virol 51: 340–345PubMedGoogle Scholar
  2. 2.
    Arthos J, Deen KC, Chaikin MA, Fornwald JA, Sathe G, Sattentau QJ, Clapham PR, Weiss RA, McDougal JS, Pietropaolo C, Axel R, Truneh A, Maddon PJ, Sweet RW (1989) Identification of the residues in human CD4 critical for the binding of HIV. Cell 57: 469–481PubMedCrossRefGoogle Scholar
  3. 3.
    Baker TS, Newcomb WW, Olson NH, Cowsert LM, Olson C, Brown JC (1991) Structures of bovine and human papillomaviruses. Analysis by cryoelectron microscopy and three-dimensional image reconstruction. Biophys J 60: 1445–1456Google Scholar
  4. 4.
    Cheng RH, Olson NH, Baker TS (1992) Cauliflower mosaic virus: a 420 subunit (T = 7), multilayer structure. Virology 186: 655–668PubMedCrossRefGoogle Scholar
  5. 5.
    Colonno RJ, Condra JH, Mizutani S, Callahan PL, Davies ME, Murcko MA (1988) Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc Natl Acad Sci USA 85: 5449–5453PubMedCrossRefGoogle Scholar
  6. 6.
    Dalgleish AG, Beverley PCL, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 ( T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763–767Google Scholar
  7. 7.
    Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM (1989) Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J 8: 1567–1579Google Scholar
  8. 8.
    Freistadt MS, Racaniello VR (1991) Mutational analysis of the cellular receptor for poliovirus. J Virol 65: 3873–3876PubMedGoogle Scholar
  9. 9.
    Giranda VL, Chapman MS, Rossmann MG (1990) Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins 7: 227–233PubMedCrossRefGoogle Scholar
  10. 10.
    Greve JM, Davis G, Meyer AM, Forte CP, Yost SC, Marlor CW, Kamarck ME, McClelland A (1989) The major human rhinovirus receptor is ICAM-1. Cell 56: 839–847PubMedCrossRefGoogle Scholar
  11. 11.
    Greve JM, Forte CP, Marlor CW, Meyer AM, Hoover-Litty H, Wunderlich D, McClelland A (1991) Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J Virol 65: 6015–6023PubMedGoogle Scholar
  12. 12.
    Hogle JM, Chow M, Filman DJ (1985) Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229: 1358–1365PubMedCrossRefGoogle Scholar
  13. 13.
    Kim S, Smith TJ, Chapman MS, Rossmann MG, Pevear DC, Dutko FJ, Felock PJ, Diana GD, McKinlay MA (1989) The crystal structure of human rhinovirus serotype 1A (HRV1A). J Mol Biol 210: 91–111PubMedCrossRefGoogle Scholar
  14. 14.
    Kim S, Boege U, Krishnaswamy S, Minor I, Smith TJ, Luo M, Scraba DG, Rossmann MG (1990) Conformational variability of a picornavirus capsid: pH- dependent structural changes of Mengo virus related to its host receptor attachment site and disassembly. Virology 175: 176–190PubMedCrossRefGoogle Scholar
  15. 15.
    Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature 312: 767–768PubMedCrossRefGoogle Scholar
  16. 16.
    Koike S, Ise I, Nomoto A (1991) Functional domains of the poliovirus receptoij. Proc Natl Acad Sci USA 88: 4104–4108 !Google Scholar
  17. 17.
    Kolatkar PR, Oliveira MA, Rossmann MG, Robbins AH, Katti SK, Hoover-Litty H, Forte C, Greve JM, McClelland A, Olson NH (1992) Preliminary X-ray crystallographic analysis of intercellular adhesion molecule-1. J Mol Biol 225: 1127–1130PubMedCrossRefGoogle Scholar
  18. 18.
    Korant BD, Lonberg-Holm K, Yin FH, Noble-Harvey J (1975) Fractionation of biologically active and inactive populations of human rhinovirus type 2. Virology 63: 384–394PubMedCrossRefGoogle Scholar
  19. 19.
    Kraulis PJ (1992) MOLSCRIPT: a program to produce both detailed and schematic plots of protein structure. J Appl Crystallogr 24: 946–950CrossRefGoogle Scholar
  20. 20.
    Lineberger DW, Graham DJ, Tomassini JE, Colonno RJ (1990) Antibodies that block rhinovirus attachment map to domain 1 of the major group receptor. J Virol 64: 2582–2587PubMedGoogle Scholar
  21. 21.
    Madshus IH, Olsnes S, Sandvig K (1984) Different pH requirements for entry of the two picornaviruses, human rhinovirus 2 and murine encephalomyocarditis virus. Virology 139: 346–357PubMedCrossRefGoogle Scholar
  22. 22.
    Marlin SD, Staunton DE, Springer TA, Stratowa C, Sommergruber W, Merluzzi VJ (1990) A soluble form of intercellular adhesion molecule-1 inhibits rhinovirus infection. Nature 344: 70–72PubMedCrossRefGoogle Scholar
  23. 23.
    McClelland A, deBear J, Yost SC, Meyer AM, Marlor CW, Greve JM (1991) Identification of monoclonal antibody epitopes and critical residues for rhinovirus binding in domain 1 of ICAM-1. Proc Natl Acad Sci USA 88: 7993–7997PubMedCrossRefGoogle Scholar
  24. 24.
    McKinlay MA, Pevear DC, Rossmann MG (1992) Treatment of the Picornavirus common cold by inhibitors of viral uncoating and attachment. Annu Rev Microbiol 46: 635–654PubMedCrossRefGoogle Scholar
  25. 25.
    Mendelsohn CL, Wimmer E, Racaniello VR (1989) Cellular receptors for polio- virus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin family. Cell 56: 855–865PubMedCrossRefGoogle Scholar
  26. 25a.
    Oliveira MA, Zhao R, Lee WM, Kremer MJ, Minor I, Rueckert RR, Diana GD, Pevear DC, Dutko FJ, McKinlay MA, Rossmann MG (1993) The structure of human rhinovirus 16. Structure 1: 51–68PubMedCrossRefGoogle Scholar
  27. 26.
    Pevear DC, Fancher MJ, Felock PJ, Rossmann MG, Miller MS, Diana G, Treasurywala AM, McKinlay MA, Dutko FJ (1989) Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J Virol 63: 2002–2007PubMedGoogle Scholar
  28. 27.
    Rossmann MG (1989) The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J Biol Chem 263: 14587–14590Google Scholar
  29. 28.
    Rossmann MG, Palmenberg AC (1988) Conservation of the putative receptor attachment site in picornaviruses. Virology 164: 373–382PubMedCrossRefGoogle Scholar
  30. 29.
    Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, Rueckert RR, Sherry B, Vriend G (1985) Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317: 145–153PubMedCrossRefGoogle Scholar
  31. 30.
    Ryu SE, Kwong PD, Truneh A, Porter TG, Arthos J, Rosenberg M, Dai X, Xuong N, Axel R, Sweet RW, Hendrickson WA (1990) Crystal structure of an HIV-binding recombinant fragment of human CD4. Nature 348: 419–426PubMedCrossRefGoogle Scholar
  32. 31.
    Sherry B, Rueckert R (1985) Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J Virol 53: 137–143PubMedGoogle Scholar
  33. 32.
    Smith TJ, Kremer MJ, Luo M, Vriend G, Arnold E, Kamer G, Rossmann MG, McKinlay MA, Diana GD, Otto MJ (1986) The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233: 1286–1293PubMedCrossRefGoogle Scholar
  34. 33.
    Staunton DE, Marlin SD, Stratowa C, Dustin ML, Springer TA (1988) Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52: 925–933PubMedCrossRefGoogle Scholar
  35. 34.
    Staunton DE, Merluzzi VJ, Rothlein R, Barton R, Marlin SD, Springer TA (1989) A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56: 849–853PubMedCrossRefGoogle Scholar
  36. 35.
    Staunton DE, Dustin ML, Erickson HP, Springer TA (1990) The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61: 243–254PubMedCrossRefGoogle Scholar
  37. 36.
    Tomassini JE, Maxson TR, Colonno RJ (1989) Biochemical characterization of a glycoprotein required for rhinovirus attachment. J Biol Chem 264: 1656–1662PubMedGoogle Scholar
  38. 37.
    Wang J, Yan Y, Garrett TPJ, Liu J, Rodgers DW, Garlick RL, Tarr GE, Husain Y, Reinherz EL, Harrison SC (1990) Atomic structure of a fragment of human CD4 containing two immunoglobulin-like domains. Nature 348: 411–418PubMedCrossRefGoogle Scholar
  39. 38.
    Weis W, Brown JH, Cusack S, Paulson JC, Skehel JJ, Wiley DC (1988) Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333: 426–431PubMedCrossRefGoogle Scholar
  40. 39.
    Williams RK, Jiang G-S, Holmes KV (1991) Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc Natl Acad Sci USA 88: 5533–5536PubMedCrossRefGoogle Scholar
  41. 40.
    Yeates TO, Jacobson DH, Margin A, Wychowski C, Girard M, Filman DJ, Hogle JM (1991) Three-dimensional structure of a mouse-adapted type2/type 1 poliovirus chimera. EMBO J 10: 2331–2341Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • M. G. Rossmann
    • 1
  • N. H. Olson
    • 1
  • P. R. Kolatkar
    • 1
  • M. A. Oliveira
    • 1
  • R. H. Cheng
    • 1
  • J. M. Greve
    • 2
  • A. McClelland
    • 2
  • T. S. Baker
    • 1
  1. 1.Department of Biological SciencesPurdue UniversityWest LafayetteUSA
  2. 2.Institute for Molecular Biologicals, Miles Inc.West HavenUSA

Personalised recommendations