Advertisement

Recent Work on the Configuration and Electronic Structure of Molecules; with some Applications to Natural Products

  • Linus Pauling
Chapter
Part of the Fortschritte der Chemie Organischer Naturstoffe book series (FORTCHEMIE (closed), volume 3)

Abstract

In the first volume of the „Fortschritte“there appeared an article by Kratky and Mark (75a) entitled „Anwendung physikalischer Methoden zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. Röntgenographie.“ Among other subjects, the authors discussed in detail the results of x-ray investigations of cellulose and proteins and other naturally-occurring substances.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Books

Books

  1. 1.
    Lewis, G. N.: Valence and the Structure of Atoms and Molecules. New York: The Chemical Catalog Co., Inc., 1923.Google Scholar
  2. 2.
    Pauling, L.: The Nature of the Chemical Bond. Ithaca, N. Y.: Cornell University Press, 1939.Google Scholar
  3. 3.
    Sidgwick, N. V.: The Electronic Theory of Valency. London: Oxford University Press, 1929.Google Scholar
  4. 4.
    — The Covalent Link in Chemistry. Ithaca, N. Y.: Cornell University Press, 1933.Google Scholar
  5. 5.
    Ewald, P.P. and C. Hermann: Ergänzungsband, Z. Kristallogr., Strukturbericht, 1913–1928.Google Scholar
  6. 6.
    Eistert, B.: Tautomeric und Mesomerie, Gleichgewicht und „Resonanz“. Stuttgart: F. Enke, 1938.Google Scholar

Journal articles

  1. 7.
    Albrecht, G. and R. B. Corey: The Crystal Structure of Glycine. J. Amer. chem. Soc. 61, 1087 (1939).Google Scholar
  2. 8.
    Allan, J., A.E. Oxford, R. Robinson, and J.C. Smith: The Relative Directive Powers of Groups of the Forms RO and RR’N in Aromatic Substitution. Part. IV. A Discussion of the Observations Recorded in Parts I, II, and III. J. chem. Soc. London 1926, 401.Google Scholar
  3. 9.
    Arndt, F.: Gleichgewicht und „Zwischenstufe“. Ber. dtsch. chem. Ges. 63, 2963 (1930).Google Scholar
  4. 10.
    E. Scholz u. F. Nachtwey: Über Dipyrylene und über die Bindungsverhältnisse in Pyron-Ringsystemen. Ber. dtsch. chem. Ges. 57, 1903 (1924).Google Scholar
  5. 11.
    Badger, R. M.: A Relation between Internuclear Distances and Bond Force Constants. J. chem. Phys. 2, 128 (1934).Google Scholar
  6. 12.
    — The Relation between Internuclear Distances and Force Constants of Molecules and its Application to Polyatomic Molecules. J. chem. Phys. 3, 710 (1935).Google Scholar
  7. 13.
    — and S.H. Bauer: The Infrared Spectrum and Internuclear Distances of Methyl Acetylene. J. chem. Phys. 5, 599 (1937).Google Scholar
  8. 14.
    Beach, J. Y. and K. J. Palmer: Internal Rotation in Ethylene Chloride. J. chem. Phys. 6, 639 (1938)Google Scholar
  9. 15.
    — and D.P. Stevenson: The Electron Diffraction Investigation of the Molecular Structures of Isobutane, t-Butyl Chloride and t-Butyl Bromide. J. Amer. chem. Soc. 60, 475 (1938).Google Scholar
  10. 16.
    — — The Electron Diffraction Investigation of the Molecular Structures of Ethyl Chloride, Ethyl Bromide, Isopropyl Chloride, Isopropyl Bromide, Methyl Chloroform, and Isocrotyl Chloride. J. Amer. chem. Soc. 61, 2643 (1939).Google Scholar
  11. 17.
    — and A. Turkevich: Internal Rotation in Ethylene Chlorobromide and Ethylene Bromide. J. Amer. chem. Soc. 61, 303 (1939).Google Scholar
  12. 18.
    Bewilogua, L.: Interferometrische Messungen an einzelnen Molekeln der Chlor-Substitutionsprodukte des Methan. Physik. Z. 32, 265 (1931).Google Scholar
  13. 19.
    Bragg, W. H. and W.L. Bragg: The Reflection of X-rays by Crystals. Proc. Roy. Soc. London, A 88, 428 (1913).Google Scholar
  14. 20.
    Bragg, W. L.: The Structure of some Crystals as Indicated by their Diffraction of X-rays. Proc. Roy. Soc. London, A 89, 248 (1913).Google Scholar
  15. 21.
    — The Analysis of Crystals by the X-ray Spectrometer. Proc. Roy. Soc. London, A 89, 468 (1914).Google Scholar
  16. 22.
    — The Arrangement of Atoms in Crystals. Philos. Mag. J. Sci. 40, 169 (1920).Google Scholar
  17. 23.
    Brockway, L. O.: Electron Diffraction by Gas Molecules. Rev. Modern Phys. 8, 231 (1936).Google Scholar
  18. 24.
    — The CN Bond in Methyl Cyanide and Methyl Isocyanide. J. Amer. chem. Soc. 58, 2516 (1936).Google Scholar
  19. 25.
    — and H. O. Jenkins: The Molecular Structures of the Methyl Derivatives of Silicon, Germanium, Tin, Lead, Nitrogen, Sulfur, and Mercury, and the Covalent Radii of the Non-Metallic Elements. J. Amer. chem. Soc. 58, 2036 (1936).Google Scholar
  20. 26.
    — and H. Lévy: The Molecular Structure of the Bromomethanes. J. Amer. chem. Soc. 59, 1662 (1937).Google Scholar
  21. 27.
    de Broglie, L.: Thèse, Paris, 1924.Google Scholar
  22. 27a.
    Carpenter, D. C. and L. O. Brockway: The Electron Diffraction Study of Paraldehyde. J. Amer. chem. Soc. 58, 1270 (1936).Google Scholar
  23. 28.
    Clews, C. J. B. and K. Lonsdale: Structure of 1,2-Diphenylbenzene. Proc. Roy. Soc. London, A 161, 493 (1937).Google Scholar
  24. 29.
    Corey, R. B.: The Crystal Structure of Diketopiperazine. J. Amer. chem. Soc. 60, 1598 (1938).Google Scholar
  25. 29a.
    — Interatomic Distances in Proteins and Related Substances. Chem. Reviews [to be published].Google Scholar
  26. 30.
    Coulson, C. A.: IV. The Nature of the Links of Certain Free Radicals. Proc. Roy. Soc. London, A 164, 383 (1938).Google Scholar
  27. 31.
    — The Electronic Structure of some Polyenes and Aromatic Molecules. VII. Bonds of Fractional Order by the Molecular Orbital Method. Proc. Roy. Soc. London, A 169, 413 (1939).Google Scholar
  28. 32.
    — The Lengths of the Links of Unsaturated Hydrocarbon Molecules. J. chem. Phys. 7, Nov. (1939).Google Scholar
  29. 33.
    Davisson, C. and L. H. Germer: Diffraction of Electrons by a Crystal of Nickel. Physic. Rev. 30, 707 (1927).Google Scholar
  30. 34.
    Degard, C.: Interpretation des expériences de diffraction d’électrons par les molecules des gaz. Hull. Soc. roy. Sci. Liège 1937, 383.Google Scholar
  31. 35.
    Debye, P.: Zerstreuung von Röntgenstrahlen. Ann. Physik 46, 800, (1915).Google Scholar
  32. 36.
    L. Bewilogua u. F. Ehrhardt: Zerstreuung von Röntgenstrahlen an einzelnen Molekeln. Physik. Z. 30, 84 (1929).Google Scholar
  33. 37.
    — Interferometrische Messungen an Molekeln. Physik. Z. 30, 524 (1929).Google Scholar
  34. 38.
    — Röntgeninterferenzen an isomeren Molekülen. Physik. Z. 31, 142 (1930).Google Scholar
  35. 39.
    — Interferometrische Bestimmung der Struktur von Einzelmolekülen. Z. Elektrochem. 36, 612 (1930).Google Scholar
  36. 40.
    — Elektroneninterferenzen an leichten Molekülen nach dem Sektorverfahren. Physik. Z. 40, 404 (1939)Google Scholar
  37. 41.
    Dhar, J.: X-ray Analysis of the Structure of Biphenyl. Indian J. Physics 7, 43 (1932).Google Scholar
  38. 42.
    Dickinson, R. G. and C. Bilicke: The Crystal Structure of Beta-Benzene Hexabromide and Hexachloride. J. Amer. chem. Soc. 50, 764 (1928).Google Scholar
  39. 43.
    R.T. Dillon, and F. Rasetti: Raman Spectra of Polyatomic Grases. Physic. Rev. 34, 582 (1929).Google Scholar
  40. 44.
    Douglas-Clark, C. H.: The Relation between Vibration Frequency and Nuclear Separation for some simple non-Hydride Diatomic Molecules. Philos. Mag. J. Sci. 18, 459 (1934).Google Scholar
  41. 45.
    — The Periodic Groups of Non-Hydride Di-Atoms. Trans. Faraday Soc. 31, 1017 (1935).Google Scholar
  42. 46.
    Ehrenfest, P.: Über Interferenzerscheinungen, die zu erwarten sind wenn Röntgenstrahlen dnrch ein zweiatomiges Gas gehen. Amsterdam Akad. 23, 1132 (1915).Google Scholar
  43. 47.
    Ehrhardt, F.: Röntgeninterferenzen an Molekülen mit zwei Kohlenstoffatomen. Physik. Z. 33, 605 (1932).Google Scholar
  44. 48.
    Eyster, E. H.: The Spectrum of Aliene in the Photographie Infra-Red. J. chem. Phys. 6, 580 (1938).Google Scholar
  45. 49.
    Fieser, L. F. and W. C. Lothrop: The Structure of Naphthalene. J. Amer. chem. Soc. 57, 1459 (1935).Google Scholar
  46. 50.
    Friedrich, W., P. Knipping u. M. Laue: Interferenzerscheinungen bei Röntgenstrahlen. Münch. Sitz.ber. 1912, 303.Google Scholar
  47. 51.
    Giauque, W. F. and J. D. Kemp: Entropies of Nitrogen Tetroxide and Nitrogen Dioxide. J. chem. Phys. 6, 40 (1938).Google Scholar
  48. 52.
    Gillam, A. E. and M. S. El Ridi: Adsorption of Grass and Butter Carotenes on Alumina. Nature (London) 136, 914 (1935).Google Scholar
  49. 53.
    — — The Isomerization of Carotenes by Chromatographic Adsorption. I. Pseudo-α-carotene. Biochemical J. 30, 1735 (1936).Google Scholar
  50. 54.
    — — and S. K. Kon: The Isomerization of Carotenes by Chromatographic Adsorption. II. Neo-α-carotene. Biochemical J. 31, 1605 (1937).Google Scholar
  51. 55.
    Ginsburg, N. and E. F. Barker: The Infrared Absorption Spectium of Methyl Deutende. J. chem. Phys. 3, 668 (1935).Google Scholar
  52. 56.
    Goldschmidt, V. M.: Geochemische Verteilungsgesetce der Elemente. Norske Vidensk. Selsk. Skr. 1926. Google Scholar
  53. 57.
    — Crystal Structure and Chemical Constitution. Trans. Faraday Soc. 25, 253 (1929).Google Scholar
  54. 58.
    van der Grinten, W.: Temperatureinfluß und Verwendung von monochromatischer Strahlung bei der Streuung von Röntgenstrahlen an Tetrachlorkohlenstoffgas. Physik. Z. 34, 609 (1933).Google Scholar
  55. 59.
    Hampson, G. C. and A. J. Stosick: The Molecular Structure of Arsenious Oxide, As4O6, Phosphorus Trioxide, P4O6, Phosphorus Pentoxide, P4O10, and Hexamethylene Tetramine, (CH2)6N4, by Electron Diffraction. J. Amer. chem. Soc. 60, 1814 (1938).Google Scholar
  56. 60.
    Hehler, W. u. F. London: Wechselwirkung neutraler Atome und homeo-polare Bindung nach der Quantenmechanik. Z. Physik 44, 455 (1927).Google Scholar
  57. 61.
    Hendricks, S. B.: The Crystal Structures of Organic Compounds. Chem. Reviews 7, 431 (1930).Google Scholar
  58. 62.
    Herzberg, G., F. Patat u. H. Verleger: Rotationsschwingungen im photographischen Ultrarot von Molekülen, die das Wasserstoffisotop der Masse 2 enthalten. II. Das C2HD-Spektrum und der C—C- und C—H-Abstand im Acetylen. Z. Physik 102, 1 (1936).Google Scholar
  59. 63.
    — — — On the Photographic Infra-red Spectrum of Methylacetylene (Allylene) and the C—C Single Bond Distance. J. physic. Chem. 41, 123 (1937).Google Scholar
  60. 64.
    — and J. W. T. Spinks: Absorption Bands of HCN in the Photographic Infra-red. Proc. Roy. Soc. London, A 147, 434 (1934).Google Scholar
  61. 65.
    Hill, D. W.: The Synthesis and Structure of Benzopyrylium (Chromylium) Salts. Chem. Reviews 19, 27 (1936).Google Scholar
  62. 66.
    Hückel, E.: Quantentheoretische Beiträge zum Benzolproblem. I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z. Physik 70, 204 (1931).Google Scholar
  63. 67.
    — Quantentheoretische Beiträge zum Benzolproblem. II. Quantentheorie der induzierten Polaritäten. Z. Physik 72, 310 (1931).Google Scholar
  64. 68.
    Huggins, M. L.: Atomic Radii. II. Physic. Rev. 28, 1086 (1926).Google Scholar
  65. 69.
    — Some Significant Results of Crystal Structure Analysis. Chem. Reviews 10, 427 (1932).Google Scholar
  66. 70.
    Ingold, C. K. and E. H. Ingold: The Nature of the Alternating Effect in Carbon Chains. Part V. A Discussion of Aromatic Substitution with Special Reference to the Respective Roles of Polar and Non-polar Dissociation; and a Further Study of the Relative Directive Efficiencies of Oxygen and Nitrogen. J. chem. Soc. London 1926, 1310.Google Scholar
  67. 71.
    James, H. M. and A. S. Coolidge: The Ground State of the Hydrogen Molecule. J. chem. Phys. 1, 825 (1933).Google Scholar
  68. 72.
    James, R. W.: Über den Einfluß der Temperatur auf die Streuung der Röntgenstrahlen durch Gasmoleküle. Physik. Z. 33, 737 (1932).Google Scholar
  69. 73.
    Kemp, J. D. and J. Egan: Hindered Rotation of the Methyl Groups in Propane. J. Amer. chem. Soc. 60, 1521 (1938).Google Scholar
  70. 74.
    — and K. S. Pitzer: The Entropy of Ethane and the Third Law of Thermodynamics. Hindered Rotation of Methyl Groups. J. Amer. chem. Soc. 59, 276 (1937).Google Scholar
  71. 75.
    Kistiakowsky, G. B., J. R. Lacher, and Fr. Stitt: The Low Temperature Gaseous Heat Capacities of C2H6 and C2D6. J. chem. Phys. 7, 289 (1939).Google Scholar
  72. 75a.
    Kratky, O. u. H. Mark: Anwendung physikalischer Methoden zur Erforschung von Naturstoffen: Form und Größe dispergierter Moleküle. — Röntgenographie. Fortschr. Chem. organ. Naturstoffe 1, 255 (1938).Google Scholar
  73. 76.
    Kossel, W.: Über Molekülbildung als Frage des Atombaus. Ann. Physik 49, 229 (1916).Google Scholar
  74. 77.
    Kuhn, R. u. A. Winterstein: Die Dihydroverbindung der isomeren Bixine und die Elektronen-Konfiguration der Polyene. Ber. dtsch. chem. Ges. 65, 646 (1932).Google Scholar
  75. 78.
    de Lange, J. J., J. M. Robertson, and I. Woodward: X-Ray Crystal Analysis of Trans-Azobenzene. Proc. Roy. Soc. London, A 171, 398 (1939).Google Scholar
  76. 79.
    Langmuir, I.: The Arrangement of Electrons in Atoms and Molecules. J. Amer. chem. Soc. 41, 868 (1919).Google Scholar
  77. 80.
    — Isomorphism, Isosterism and Covalence. J. Amer. chem. Soc. 41, 1543 (1919).Google Scholar
  78. 81.
    Lennard-Jones, J. E.: The Electronic Structures of Some Polyenes and Aromatic Molecules. I. The Nature of the Links by the Method of Molecular Orbitals. Proc. Roy. Soc. London, A 158, 280 (1937).Google Scholar
  79. 82.
    — and C. A. Coulson: The Structure and Energies of some Hydrocarbon Molecules. Trans. Faraday Soc. 35, 811 (1939).Google Scholar
  80. 83.
    — and J. Turkevich: II. The Nature of the Links of Some Aromatic Molecules. Proc. Roy. Soc. London, A 158, 297 (1937).Google Scholar
  81. 84.
    Lewis, G. N.: The Atom and the Molecule. J. Amer. chem. Soc. 38, 762 (1916).Google Scholar
  82. 85.
    Lonsdale, K.: Non-planar Aromatic Molecules. Z. Kristallogr. A 97, 91 (1937).Google Scholar
  83. 86.
    LuValle, J. E. and V. Schomaker: The Electron Diffraction Study of Glyoxal, Dimethylglyoxal, and Oxalyl Chloride. J. Amer. chem. Soc. 61, Dec. (1939).Google Scholar
  84. 87.
    Mack, E., jr.: The Spacing of Non-Polar Molecules in Crystal Lattices. The Atomic Domain of Hydrogen. A New Feature of Structure of the Benzene Ring. J. Amer. chem. Soc. 54, 2141 (1932).Google Scholar
  85. 88.
    Mulliken, R. S.: Intensities of Electronic Transitions in Molecular Spectra. III. Organic Molecules with Double Bonds. Conjugated Dienes. J. chem. Phys. 7, 121 (1939).Google Scholar
  86. 89.
    — Intensities of Electronic Transitions in Molecular Spectra. VII. Conjugated Polyenes and Carotenoids. J. chem. Phys. 7, 364 (1939).Google Scholar
  87. 90.
    Pauling, L.: The Shared-Electron Chemical Bond. Proc. Nat. Acad. Sci. USA. 14, 359 (1928).Google Scholar
  88. 91.
    — The Nature of the Chemical Bond. Applications of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules. J. Amer. chem. Soc. 53, 1367 (1931).Google Scholar
  89. 92.
    — The Nature of the Chemical Bond. II. The One-electron Bond and the Three-electron Bond. J. Amer. chem. Soc. 53, 3225 (1931)..Google Scholar
  90. 93.
    — Interatomic Distances in Covalent Molecules and Resonance between Two or More Lewis Electronic Structures. Proc. Nat. Acad. Sci. USA. 18, 293 (1932).Google Scholar
  91. 94.
    — Note on the Interpretation of the Infra-red Absorption of Organic Compounds Containing Hydroxyl and Imino Groups. J. Amer. chem. Soc. 58, 94 (1936).Google Scholar
  92. 95.
    — A Theory of the Color of Dyes. Proc. Nat. Acad. Sci. USA. 25, Nov. (1939).Google Scholar
  93. 96.
    — and L. O. Brockway: A Study of Methods of Interpretation of Electron-Diffraction Photographs of Gas Molecules, with Results for Benzene and Carbon Tetrachloride. J. chem. Phys. 2, 867 (1934).Google Scholar
  94. 97.
    — The Radial Distribution Method of Interpretation of Electron Diffraction Photographs of Gas Molecules. J. Amer. chem. Soc. 57, 2684 (1935).Google Scholar
  95. 98.
    — Carbon-Carbon Bond Distances. The Electron Diffraction Investigation of Ethane, Propane, Isobutane, Neopentane, Cyclopropane, Cyclopentane, Cyclohexane, Aliene, Ethylene, Isobutene, Tetramethylethylene, Mesitylene, and Hexamethylbenzene. Revised Values of Covalent Radii. J. Amer. chem. Soc. 59, 1223 (1937)Google Scholar
  96. 99.
    — and J. Y. Beach: The Dependence of Interatomic Distance on Single Bond-Double Bond Resonance. J. Amer. chem. Soc. 57, 2705 (1935).Google Scholar
  97. 100.
    — and M. L. Huggins: Covalent Radii of Atoms and Interatomic Distances in Crystals Containing Electron-Pair Bonds. Z. Kristallogr. 87, 205 (1934).Google Scholar
  98. 101.
    Pauling, L. and J. Sherman: The Nature of the Chemical Bond. VI. The Calculation from Thermochemical Data of the Energy of Resonance of Molecules among Several Electronic Structures. J. chem. Phys. 1, 606 (1933).Google Scholar
  99. 102.
    H. D. Springall, and K. J. Palmer: The Electron Diffraction Investigation of Methylacetylene, Dimethylacctylene, Dimethyldiacetylene, Methyl Cyanide, Diacetylene, and Cyanogen. J. Amer. chem. Soc. 61, 927 (1939).Google Scholar
  100. 103.
    — and G. W. Wheland: The Nature of the Chemical Bond. V. The Quantum Mechanical Calculation of the Resonance Energy of Benzene and Naphthalene and the Hydrocarbon Free Radicals. J. chem. Phys. 1, 362 (1933).Google Scholar
  101. 104.
    Penney, W. G.: The Electronic Structure of Some Polyenes and Aromatic Molecules. III. Bonds of Fractional Order by the Pair Method., Proc. Roy. Soc. London, A 158, 306 (1937).Google Scholar
  102. 105.
    — and G. J. Kynch: VI. Phenylethylene, Stilbene, Tolane, and the Phenyl-methyl Radical. Proc. Roy. Soc. London, A 164, 409 (1938).Google Scholar
  103. 106.
    Pickett, L. W.: An X-ray Study of p-Diphenylbenzene. Proc. Roy. Soc. London, A 142, 333 (1933).Google Scholar
  104. 107.
    Pierce, W. C.: The Scattering of X-Rays by the Gaseous Dichlorbenzenes. Physic. Rev. 43, 145 (1933).Google Scholar
  105. 108.
    — X-Ray Diffraction by Gaseous Benzene Derivatives. J. chem. Phys. 2, 1 (1934).Google Scholar
  106. 109.
    Pitzer, K. S.: Thermodynamics of Gaseous Hydrocarbons. J. chem. Phys. 5, 473(1937).Google Scholar
  107. 110.
    Robertson, J.M.: The Crystalline Structure of Anthracene. A Quantitative X-Ray Investigation. Proc. Roy. Soc. London, A 140, 79 (1933).Google Scholar
  108. 111.
    — The Crystalline Structure of Naphthalene. A Quantitative X-Ray Investigation. Proc. Roy. Soc. London, A 142, 674 (1933).Google Scholar
  109. 112.
    — and L. O. Brockway: The Crystal Structure of Hexamethylbenzene, J. chem. Soc. London 1939, 1324.Google Scholar
  110. 113.
    — and I. Woodward: A X-Ray Study of the Phthalocyanines. Part III. Quantitative Structure Determination of Nickel Phthalocyanine. J. chem. Soc. London 1937, 219.Google Scholar
  111. 114.
    — X-Ray Analysis of the Dibenzyl Series. IV. Detailed Structure of Stilbene. Proc. Roy. Soc. London, A 162, 568 (1937).Google Scholar
  112. 115.
    — X-Ray Analysis of the Dibenzyl Series. V. Tolane and the Triple Bond. Proc. Roy. Soc. London, A 164, 436 (1938).Google Scholar
  113. 116.
    Rouault, M.: La structure de la molécule PCl5 par diffraction des électrons. C. R. Acad. Sciences 207, 620 (1938).Google Scholar
  114. 117.
    Schäfer, K.: Zur Kenntnis der inneren Rotation und der Normalschwingungen des Äthans. III. Die statistische Berechnung der Rotationswärme und der Entropie des Äthans. Z. physik. Chem., B 40, 357 (1938).Google Scholar
  115. 118.
    Sidgwick, N. V. and E. J. Bowen: The Structure of Simple Molecules. Ann. Reports chem. Soc. London 28, 384 (1931).Google Scholar
  116. 119.
    — The Covalency Rule and Atomic Dimensions. Ann. Reports chem. Soc. London 29, 64 (1933).Google Scholar
  117. 120.
    Schomaker, V.: The Electron-Diffraction Investigation of Phosphorus Pentachloride. J. Amer. chem. Soc. 61, Dec. (1939).Google Scholar
  118. 121.
    — An Improved Radial Distribution Treatment of Electron Diffraction Photographs. J. Amer. chem. Soc. (to be published).Google Scholar
  119. 122.
    — and L. Pauling: The Electron Diffraction Investigation of the Structure of Benzene, Pyridine, Pyrazine, Butadiene, Cyclopentadiene, Furan, Pyrrole, and Thiophene. J. Amer. chem. Soc. 61, 1769 (1939).Google Scholar
  120. 123.
    Schomaker, V. and D. P. Stevenson: The Electron Diffraction Investigation of the Molecular Structures of Meso and Racemic 2,3-Dibromobutane. J. Amer. chem. Soc. 61, Nov. (1939).Google Scholar
  121. 124.
    — The Electron-Diffraction Study of Methyl Alcohol. J. Amer. chem. Soc. (to be published).Google Scholar
  122. 125.
    — The Comparison of Results of Electron Diffraction and Spectroscopic Studies of Methane, Oxygen, Nitrogen, Chlorine, Bromine, Iodine, and Carbon Dioxide. J. Amer. chem. Soc 61, Dec. (1939).Google Scholar
  123. 126.
    Schrödinger, E.: Quantisierung als Eigenwertproblem. Ann. Physik 79, 489 (1926).Google Scholar
  124. 127.
    Slater, J.C.: Directed Valence in Polyatomic Molecules. Physic. Rev. 37, 481 (1931).Google Scholar
  125. 128.
    Stevenson, D. P. and J.Y. Beach: The Electron Diffraction Investigation of the Molecular Structures of Hydrogen Disulfide, Dimethyl Disulfide and Sulfur Dichloride. J. Amer. chem. Soc. 60, 2872 (1938).Google Scholar
  126. 129.
    — The Molecular Structure of tert. Butyl Alcohol. J. Amer. chem. Soc. (to be published).Google Scholar
  127. 130.
    H. D. Burnham, and Verner Schomaker: The Molecular Structure of Acetaldehyde. J. Amer. chem. Soc. 61, 2922 (1939).Google Scholar
  128. 131.
    J. E. Luvalle, and V. Schomaker: The Structure of Formaldehyde from Electron Diffraction. J. Amer. chem. Soc. 61, 2508 (1939).Google Scholar
  129. 132.
    Stitt, F.: Infra-Red and Raman Spectra of Polyatomic Molecules. VII C2D6. J. chem. Phys. 7, 297 (1939).Google Scholar
  130. 133.
    Sutton, L. E. and L. O. Brockway: The Electron Diffraction Investigation of the Molecular Structures of (1) Chlorine Monoxide, Oxygen Fluoride, Dimethyl Ether and 1,4-Dioxane and of (2) Methyl Chloride, Methylene Chloride, and Chloroform, with Some Applications of the Results. J. Amer. chem. Soc. 57, 473 (1935).Google Scholar
  131. 134.
    Thiele, J.: Zur Kenntnis der ungesättigten Verbindungen. I. Theorie der ungesättigten und aromatischen Verbindungen. Liebigs Ann. Chem. 306, 87 (1899).Google Scholar
  132. 135.
    Thompson, H. W.: The Structure of Ethylene. Trans. Faraday Soc. 35 697 (1939).Google Scholar
  133. 136.
    — and J.W. Linnett: Force Constants and Molecular Structure. Part V. The Relation between Force Constant and Bond Length. J. chem. Soc. London 1937, 1396.Google Scholar
  134. 137.
    — Force Constants and Molecular Structure. Part VI. Compound Containing the Cyanide Link. J. chem. Soc. London 1937, 1399.Google Scholar
  135. 138.
    Thompson, G. P. and A. Reid: Diffraction of Cathode Rays by a Thin Film. Nature (London) 119, 890 (1927).Google Scholar
  136. 139.
    Wierl, R.: Elektronenbeugung und Molekülbau. I. Ann. Physik 8, 521 (1931);Google Scholar
  137. 139.
    Wierl, R.: Elektronenbeugung und Molekülbau. II. Ann. Physik 13, 453 (1932).Google Scholar
  138. 140.
    Wulf, O. R. and U. Liddel: Quantitative Studies of the Infra-red Absorption of Organic Compounds Containing NH and OH Groups. J. Amer. chem. Soc. 57, 1464 (1935); and later papers.Google Scholar
  139. 141.
    Zechmeister, L., L. v. Cholnoky u. A. Polgár: Isomerisierung des Zeaxanthins und Physaliens. Ber. dtsch. chem. Ges. 72, 1678 (1939).Google Scholar
  140. 142.
    — and P. Tuzson: Isomerization of Carotenoids. Biochemical J. 32, 1305 (1938).Google Scholar
  141. 143.
    — Umkehrbare Isomerisierung von Carotinoiden durch Jod-Katalyse. Ber. dtsch. chem. Ges. 72, 1340 (1939).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1939

Authors and Affiliations

  • Linus Pauling
    • 1
  1. 1.PasadenaUSA

Personalised recommendations