A Note on a Previous Paper “New Foundations of Projective and Affine Geometry”

  • Franz Alt
  • Karl Menger


This first paragraph is an erratum to the paper cited above. In §2, postulate IV (p. 458, referring to the symbol which is only afterwards introduced, has to be replaced by the two propositions (a) and (a’) of p. 458. Nothing else has to be changed in §2 since it is these hypotheses which are actually used. In §3 the remark of p. 461 that law 5 is equivalent to IV must be replaced then, by the statement that law 5, though stronger than IVa and IVa’, still holds in projective as well as in affine spaces.


  1. 1.
    S. S. Chern: The Mathematical Works of Wilhelm Blaschke - An Update. Collected Works of W. Blaschke, Thaies Verlag, Essen, Vol. V (1985) 21–23.Google Scholar
  2. 2.
    A. Herzer: Chain Geometries. In: Handbook of Incidence Geometry, ed. by F. Buekenhout. Elsevier Science B.V., Amsterdam, 1994, 781–842 (see page 819).Google Scholar
  3. 3.
    W. Benz: Real Geometries. BI Wissenschaftsverlag, Mannheim, Leipzig, Wien, Zürich, 1994 (see page 190).zbMATHGoogle Scholar
  4. 4.
    L. M. Blumenthal: Theory and Applications of Distance Geometry. Chelsea Public. Comp., Bronx, New York, 1953, 1970.zbMATHGoogle Scholar
  5. 5.
    L. M. Blumenthal: A Modern View of Geometry. W. H. Freeman and Comp., San Francisco and London, 1961.zbMATHGoogle Scholar
  6. 6.
    W. Benz: Grundlagen der Geometrie. Dokumente zur Geschichte der Math. 6 (1990) 231–267 (Festschrift zum hundertjährigen Jubiläum der DMV, Vieweg Verlag) (p. 249).zbMATHGoogle Scholar
  7. 7.
    M. Pasch: Vorlesungen über neuere Geometrie. Teubner Verlag, Leipzig, 1882.zbMATHGoogle Scholar
  8. 8.
    See 6, pages 231, 232.Google Scholar
  9. 9.
    D. Hilbert: Grundlagen der Geometrie. 1. Aufl. Berlin, 1899, 11. Aufl. Stuttgart, 1972.zbMATHGoogle Scholar
  10. 10.
    See 6, pages 232, 234.Google Scholar
  11. 11.
    J. A. Lester: Distance Preserving Transformations. In: Handbook of Incidence Geometry, ed. by F. Buekenhout. Elsevier Science B.V., Amsterdam, 1994, 921–944.Google Scholar
  12. 12.
    W. Benz: Characterizations of Geometrical Mappings Under Mild Hypotheses - Über ein modernes Forschungsgebiet der Geometrie. Festschrift z. 75-jährigen Jubiläum d. Univ. Hamburg. Hamb. Beitr. Wiss. gesch. 15 (1994) 393–409.zbMATHGoogle Scholar
  13. 13.
    W.-L. Huang: Null Line Preserving Bijections of Schwarzschild Spacetime. Comm. Math. Phys. 201 (1999) 471–491.MathSciNetCrossRefGoogle Scholar
  14. 13a.
    W.-L. Huang: Transformations of Strongly Causal Space-Times Preserving Null Geodesics. J. Math. Phys. 39 (1998) 1637–1641.MathSciNetCrossRefGoogle Scholar
  15. 14.
    A. K. Guts: Axiomatic Relativity Theory. Russian Math. Surveys 37: 2 (1982) 41–89.CrossRefGoogle Scholar
  16. 15.
    L. M. Blumenthal, K. Menger: Studies in Geometry. W. H. Freeman and Comp., San Francisco, 1970.zbMATHGoogle Scholar
  17. 16.
    B. Schweizer, A. Sklar: Probabilistic Metric Spaces. North-Holland. New York, Amsterdam, 1983.zbMATHGoogle Scholar
  18. 17.
    B. Schweizer, Commentary on Probabilistic Geometry, these Selecta, vol. 2.Google Scholar

Copyright information

© Springer-Verlag Wien 2002

Authors and Affiliations

  • Franz Alt
  • Karl Menger

There are no affiliations available

Personalised recommendations