Advertisement

Commentary on Didactics, Variables, Fluents

  • B. Schweizer
  • A. Sklar
Chapter
  • 69 Downloads

Abstract

In the introduction to Part IV of his “Selected Papers in Logic and Foundations, Didactics, Economics” [M11] Menger says: “The realization of the need for a clarification of the basic concepts and a reform of the didactics [of mathematics] first came to me in the early 1930’s in Vienna — but not in connection with the Circle. It was rather when teaching a course in calculus at the University that I was vexed by finding that the traditional treatment forced me to dodge some difficult questions. A few years later in America,… some of these questions were raised by beginners whose initiation into calculus was my responsibility…”

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References to Menger

  1. M1.
    The Mathematics of Elementary Thermodynamics. American Journal of Physics 18 (1950) 89–103.CrossRefGoogle Scholar
  2. M2.
    Calculus. A Modem Approach, Ginn and Company, Boston, 1955.Google Scholar
  3. M3.
    Random Variables from the Point of View of a General Theory of Variables, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (1954–55), L. M. LeCam, J. Neyman (eds.), University of California Press, Berkeley 2 (1956) 215–229.Google Scholar
  4. M4.
    Why Johnny Hates Math. The Mathematics Teacher 49 (1956) 578–584.Google Scholar
  5. M5.
    What Are x and y? The Mathematical Gazette 40 (1956) 246–255.MathSciNetCrossRefGoogle Scholar
  6. M6.
    Rates of Change and Derivatives. Fundamenta Mathematicae 46 (1958) 89–102.MathSciNetCrossRefGoogle Scholar
  7. M7.
    A Counterpart of Occam’s Razor in Pure and Applied Mathematics. Ontological Uses, Synthese 12 (1960) 415–428.Google Scholar
  8. M8.
    A Counterpart of Occam’s Razor in Pure and Applied Mathematics. Semantic Uses, Synthese 13 (1961) 331–349.Google Scholar
  9. M9.
    Variables, Constants, Fluents. Current Issues in the Philosophy of Science, H. Feigl, G. Maxwell (eds.), New York, 1961, 304–318.Google Scholar
  10. M10.
    Mathematical Implications of Mach’s Ideas: Positivistic Geometry, The Clarification of Functional Connections. In: Ernst Mach, Physicist and Philosopher, Boston Studies in the Philosophy of Science VI, R. S. Cohen, R. J. Seeger (eds.), Reidel Dordrecht, 1970, 107–125.Google Scholar
  11. M11.
    Selected Papers in Logic and Foundations, Didactics, Economics, Vienna Circle Collection, Vol. 10, Reidel, Dordrecht, 1979.Google Scholar
  12. M12.
    Reminiscences of the Vienna Circle and the Mathematical Colloquium, Vienna Circle Collection, Vol. 20, L. Golland, B. McGuinness, A. Sklar (eds.), Kluwer, Dordrecht, 1994.Google Scholar

Other References

  1. 1.
    I. T. Adamson: Review of K. Menger: Calculus, a Modern Approach. Mathematical Gazette 39 (1954) 245–250.CrossRefGoogle Scholar
  2. 2.
    I. T. Adamson: Transformation of integrals. American Mathematical Monthly 65 (1958) 590–596.MathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Apostol et al. (eds.): Selected Papers on Calculus. Mathematical Association of America, 1968.Google Scholar
  4. 4.
    W. L. Duren Jr.: Review of K. Menger: Calculus, a Modern Approach. Bull. Amer. Math. Soc. 61 (1955) 185–187.MathSciNetCrossRefGoogle Scholar
  5. 5.
    T. Erber: Modern Calculus Notation Applied to Physics. Eur. J. Phys. 15 (1994) 111–118.CrossRefGoogle Scholar
  6. 6.
    J. B. Harkin: The Pre-limit Calculus of K. Menger. Math. Teachers J. 23 (1973) 71–75.Google Scholar
  7. 7.
    A. N. Kolmogorov: Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer-Verlag. Translated as: Foundations of the Theory of Probability. 2nd Ed., Chelsea 1956, 1933.CrossRefGoogle Scholar
  8. 8.
    M. Loève: Probability Theory 1, 4th Ed., Springer-Verlag, 1977.zbMATHGoogle Scholar
  9. 9.
    M. E. Munroe: Manipulations with Differentials Made Respectable. In: K. O. May (ed.), Lectures in Calculus. Holden-Day, 1967, 127–144.Google Scholar
  10. 10.
    A. Rapoport: Review of K. Menger: Calculus, a Modern Approach. ETC. 12 (1955) 137–144.Google Scholar
  11. 11.
    B. Russell: A History of Western Philosophy, Simon and Schuster, New York, 1945.Google Scholar
  12. 12.
    A. Sklar: Random Variables, Distribution Functions and Copulas. In: L. Rííschendorf, B. Schweizer, M. D. Taylor (eds.), Distributions with Fixed Marginals and Related Topics. CMS Lecture Notes 28 (1996) 1–14.Google Scholar
  13. 13.
    A. Tarski, S. Givant: A Formalization of Set Theory Without Variables. AMS Colloquium Publ. 41 (1987).Google Scholar
  14. 14.
    A. Wald: On the Principles of Statistical Inference, Notre Dame Mathematical Lectures. No. 1 (1942).Google Scholar
  15. 15.
    A. Wald: Sequential Analysis, Wiley, 1947.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • B. Schweizer
  • A. Sklar

There are no affiliations available

Personalised recommendations