Two theorems on the generation of systems of functions

  • Karl Menger
  • H. Ian Whitlock


This paper deals with two basic questions about multiplace functions (“functions of several variables”) defined on a finite set Nm = {1, ..., m}. How many functions can k functions generate by composition, and how many functions are needed to generate by composition all p-place functions?


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    N. M. Martin, The Sheffer functions of the 3-valved logic J. Symb. Logic 19 (1954), pp. 45–51.CrossRefGoogle Scholar
  2. [2]
    K. Menger, Algebra of functions: past, present, future, Rend. Math. Roma 20 (1961), pp. 409–430.MathSciNetzbMATHGoogle Scholar
  3. [3]
    K. Menger, Superassociative systems and logical fweclors Math. Annalen 157 (1964), pp. 278–295.MathSciNetCrossRefGoogle Scholar
  4. [4]
    S. Piccard, Sur les fonctions définies duns lea ensembles finis quelconques, Fund. Math. 24 (1935), pp. 298–301.CrossRefGoogle Scholar
  5. [5]
    E. L. Post, Introduction to a general Theory of elementary propositions, Amer. J. Math. 43 (1921), pp. 163–185.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J. Slupecki, C. R. Soc. Sci. Let. Varsovie, Cl. III, 32 (1939).Google Scholar
  7. [7]
    H. I. Whitlock, A composition. algebra for multiplace functions Math. Annalen 157 (1964) pp. 167–178.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2003

Authors and Affiliations

  • Karl Menger
    • 1
  • H. Ian Whitlock
    • 1
  1. 1.ChicagoUSA

Personalised recommendations