Advertisement

Spinal Cord Protection in Thoracic Aortic Surgery

  • Jean Bachet
Chapter

Abstract

If we except death, ischaemic spinal cord injury (SCI) represents the most devastating postoperative complication of open and endovascular descending thoracic and thoraco-abdominal repair. Through experimental and clinical studies, a large number of diagnostic, surgical, anaesthesiologic and intensive care management innovations and modifications have been introduced during the last half-century in order to reduce dramatically the incidence of SCI. This has led the surgical community to better understand the physiology of the spinal cord and the neural structures and to evolve from a strict anatomical vascular concept of spinal cord protection to a more physiological one. In the present chapter, we shall describe the anatomy and physiology of the spinal cord, the consequences of ischaemia, the techniques and improvements regarding spinal cord blood supply and the strategies for shortening intra-procedural spinal cord ischaemia and for increasing spinal cord tolerance to transitory ischaemia through detection of ischaemia and augmentation of spinal cord blood perfusion. Hopefully this will help surgical teams dealing with thoracic or thoraco-abdominal aortic repair in decision-making algorithms in order to understand, prevent or reverse ischaemic SCI.

Keywords

Thoraco-abdominal aorta Surgery Endovascular stenting Spinal cord vascularization Left-heart bypass Cardiopulmonary bypass Segmental arteries Deep hypothermia CSF drainage Collateral network 

References

  1. 1.
    Etheredge SN, Yee J, Smith JV, Schonberger S, Goldman MJ. Successful resection of a large aneurysm of the upper abdominal aorta and replacement with a homograft. Surgery. 1955;38:1071–5.Google Scholar
  2. 2.
    De Bakey ME, Creech O, Morris GC. Aneurysm of the thoraco-abdominal aorta involving the celiac, superior mesenteric and renal arteries: report of four cases treated by resection and homograft replacement. AnnSurg. 144:549–73.Google Scholar
  3. 3.
    Crawford ES. Thoraco-abdominal and abdominal aneurysms involving celiac, superior mesenteric and renal arteries. Ann Surg. 1974;179:763–72.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Corbin JL. Anatomie et pathologie artérielle de la moelle. Paris: Masson; 1961.Google Scholar
  5. 5.
    Biglioli P, Spirito R, Roberto M, Grillo F, Cannata A, Parolari A, Maggioni M, Coggi G. The anterior spinal artery: the main arterial supply of the human spinal cord. A preliminary anatomic study. J Thorac Cardiovasc Surg. 2000;119:376–9.PubMedCrossRefGoogle Scholar
  6. 6.
    Griepp RB, Ergin MA, Galla JD, Lansman S, Khan N, Quintana C, McCullough J, Bodian C. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoraco-abdominal aorta. J Thorac Cardiovasc Surg. 1996;112:1202–15.PubMedCrossRefGoogle Scholar
  7. 7.
    Adamkiewicz A. Die blutgefässe des menschlichen rückenmarkoberfläche. S B Heidelberg Akad Wiss. 1882;85:101–30.Google Scholar
  8. 8.
    Lazorthes G, Gouaze A, Zadeh JO, Santini JJ, Lazorthes Y, Burdin P. Arterial vascularization of the spinal cord. Recent studies of the anastomotic substitution pathways. J Neurosurg. 1971;35:253–62.PubMedCrossRefGoogle Scholar
  9. 9.
    Svensson LG, Klepp P, Hinder RA. Spinal cord anatomy of the baboon: comparison with man and implications on spinal cord blood flow during thoracic aortic cross-clamping. S Afr J Surg. 1986;24:32–4.PubMedGoogle Scholar
  10. 10.
    Taira Y, Marsala M. Effects of proximal arterial perfusion pressure on function, spinal cord blood flow and histo-pathologic changes after increasing intervals of aortic occlusion in the rat. Stroke. 1996;27:1850–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Marcus ML, Heistad DD, Ehrhardt JC, Abou FM. Regulation of total and regional spinal cord blood flow. Circ Res. 1977;41:128–34.PubMedCrossRefGoogle Scholar
  12. 12.
    Satran R. Spinal cord infarction. Stroke. 1988;19:529–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Holz A, Nyström B, Gerdin B. Regulation of spinal cord blood flow in the rat as measured by quantitative autoradiography. Acta Physiol Scand. 1988;133:485–93.CrossRefGoogle Scholar
  14. 14.
    Rubinstein A, Arbit E. Spinal cord blood flow in the rat under normal physiological conditions. Neurosurgery. 1990;27:882–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Miyamoto K, Ueno A, Wada T. A new and simple method of preventing spinal cord damage following temporary occlusion of thoracic aorta by draining the cerebrospinal fluid. J Cardiovasc Surg. 1960;1:188–97.Google Scholar
  16. 16.
    Koroshetz WJ, Moskowitz MA. Emerging treatments for stroke in humans. Trends Pharmacol Sci. 1996;17:227–33.PubMedCrossRefGoogle Scholar
  17. 17.
    Eliasson MJL, Huang Z, Ferrante RJ, Sasamata M, Molliver ME, Snyder SH, Moskowitz MA. Neuronal nitric oxide synthase activation and peroxynitrite formation in ischemic stroke linked to neural damage. J Neurosci. 1999;19:5910–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee SZ, Pan ZH, Aggarwal SK, Chen HSV, Hartman J, Sucher NJ, Lipton SA. Effect of nitric oxide production on the redox modulatory site on the NMDA receptor-channel complex. Neuron. 1992;8:1087–99.CrossRefGoogle Scholar
  19. 19.
    Rokkas CK, Helfrich LR, Lobner DC, Choi DW, Kouchoukos NT. Dextrophan inhibits the release of excitatory amino acids during spinal cord ischemia. Ann Thorac Surg. 1994;38:312–20.CrossRefGoogle Scholar
  20. 20.
    Simpson RK, Robertson CS, Goodman JC. Spinal cord ischemia-induced elevation of amino-acids : extra-cellular measurement with micro dialysis. Neurochem Res. 1990;15:635–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci. 1990;13:171–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Rothman SM, Olney JW. Excito-toxicity and the NMDA receptors. Trends Neurosci. 1987;10:299–302.CrossRefGoogle Scholar
  23. 23.
    Olney JW, Sharpe LG. Brain lesions in infant rhesus monkey treated with monosodium glutamate. Science. 1969;166:386–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Mori A, Ueda Y, Nakamishi T, Yasudo M, Aeba R, Odagushi H, Mitsumaru A, Ito T, Yozu R, Koto A, Kawada S. Detrimental effects of exogenous glutamate on spinal cord neurons during brief ischemia in vivo. Ann Thorac Surg. 1997;63:1057–62.PubMedCrossRefGoogle Scholar
  25. 25.
    Regan RF. The vulnerability of spinal cord neurons to excito-toxic injury: comparison with cortical neurons. Neurosci Lett. 1996;213:9–12.PubMedCrossRefGoogle Scholar
  26. 26.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freema BA. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990;87:1620–4.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Demopoulos HB, Flamm ES, Pietronigro D. The free radical pathology and the microcirculation in the major central nervous system disorders. Acta Physiol Scand. 1980;492:S91–119.Google Scholar
  28. 28.
    Wan IYP, Angelini GD, Bryan AJ, Ryder I, Unsderwood MJ. Prevention of spinal cord ischaemia during descending thoracic and thoraco-abdominal aortic surgery. Eur J Cardiothorac Surg. 2001;19:203–13.PubMedCrossRefGoogle Scholar
  29. 29.
    Barinaga M. Stroke damaged neurons may commit cellular suicide. Science. 1998;281:1302–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Charriault-Marlangue C, Margail I, Represa A, Popovici T, Plotkine M, Ben-Ari Y. Apoptosis and necrosis after reversible focal ischaemia: an in situ DNA fragmentation analysis. J Cereb Blood Flow Metab. 1996;16:186–94.CrossRefGoogle Scholar
  31. 31.
    Du C, Hu R, Csernansky CA, Hsu CY, Choi DW. Very delayed infarction after mild focal cerebral ischemia: a role for apoptosis? J Cereb Blood Flow Metab. 1996;16:195–201.PubMedCrossRefGoogle Scholar
  32. 32.
    Linnik M, Zobrist RH, Hatfield MD. Evidence supporting a role for programmed cell death in focal cerebral ischaemia in rats. Stroke. 1993;24:2002–9.PubMedCrossRefGoogle Scholar
  33. 33.
    McManus JP, Buchan AM, Hill IE, Rasquinha I, Preston E. Global ischaemia can cause DNA fragmentation indicative of apoptosis in rat brain. Neurosci Lett. 1993;164:89–92.CrossRefGoogle Scholar
  34. 34.
    Kato H, Kanellopoulos GP, Matsuo S, Wu YJ, Jacquin MF, Hsu CY, Choi DW, Kouchoukos NT. Protection of rat spinal cord from ischemia with dextrorphan and cycloheximide : effects on necrosis and apoptosis. J Thorac Cardiovasc Surg. 1997;114:609–18.PubMedCrossRefGoogle Scholar
  35. 35.
    Sakurai M, Fukuyama N, Takizawa S, Abe K, Hayashi T, Shinohara Y, Nakazawa H, Tabayashi K. Dissociation of HSP72 and HSC73 heat shock mRNA inductions after spinal cord ischemia in rabbits. Neurosci Lett. 1996;217:113–6.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sakurai M, Hayashi T, Abe K, Itoyama Y, Tabayashi K. Cyclin D1 and Cdk4 protein induction in motor neurons after transient spinal cord ischemia in rabbits. Stroke. 2000;31:200–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Hara H, Friedlander RM, Gagliardini V, Ayata C, Fink K, Huang Z, Shimizu-Sasamata M, Yuan J, Moskowitz MA. Inhibition of the interleukin-1-β converting enzyme family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A. 1997;94:2007–12.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hayashi T, Sakurai M, Abe K, Sadahiro M, Tabayashi K, Itoyama Y. Apoptosis of motor neurons with induction of caspases in the spinal cord after ischemia. Stroke. 1998;29:1007–13.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Krajewski S, Krajewska M, Ellerby LM, Welsh K, Xie Z, Deveraux QL, Salvesen GS, Bredesen DE, Rosenthal RE, Fiskum G, Reed JC. Release of Caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. PNAS. 1999;96:5752–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997;3:614–20.PubMedCrossRefGoogle Scholar
  41. 41.
    Chinaiyan AM, O’Rourke K, Lane BR, Dixit VM. Interaction of CED-4 with CED-3 and CED-9 : a molecular framework for cell death. Science. 1997;275:1122–6.CrossRefGoogle Scholar
  42. 42.
    Gelman S, Reves JG, Fowler K, Samuelson PN, Lell WA, Smith LR. Regional blood flow during cross-clamping of the thoracic aorta and infusion of nitroprusside. J Thorac Cardiovasc Surg. 1983;85:287–91.PubMedGoogle Scholar
  43. 43.
    Cernaianu AC, Olah A, Cilley JH Jr, Gaprindashvili T, Galucci JG, Del Rossi AJ. Effects of sodium nitroprusside on paraplegia during cross-clamping of the thoracic aorta. Ann Thorac Surg. 1993;56:1035–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Blaisdell W, Cooley D. The mechanism of paraplegia after temporary thoracic occlusion and its relation to spinal fluid pressure. Surgery. 1962;51:351–5.PubMedGoogle Scholar
  45. 45.
    Carrel A. On the experimental surgery of the thoracic aorta and the heart. Ann Surg. 1910;52:83–95.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Svensson LG, Loop FD. Prevention of spinal cord ischemia in aortic surgery. In: Bergan JJ, JST Y, editors. Arterial surgery: new diagnostic and operative techniques. New York: Grune & Straton; 1998. p. 273–85.Google Scholar
  47. 47.
    Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ. Experience with 1509 patients undergoing thoraco-abdominal aortic operations. J Vasc Surg. 1993;17:357–68.CrossRefGoogle Scholar
  48. 48.
    Katz NM, Blackstone EH, Kirklin JW, Karp RB. Incremental risk factors for spinal cord injury following operation for aortic transaction. J Thorac Cardiovasc Surg. 1981;81:669–74.PubMedGoogle Scholar
  49. 49.
    Livesay JL, Cooley DA, Ventimiglia RA. Surgical experience in descending thoracic aneurysmectomy with and without adjuncts to avoid ischemia. Ann Thorac Surg. 1985;39:37–46.PubMedCrossRefGoogle Scholar
  50. 50.
    Von Oppel UO, Dunne TT, De Groot KM, Zilla P. Traumatic aortic rupture: twenty-year meta-analysis of mortality and risk of paraplegia. Ann Thorac Surg. 1994;58:585–93.CrossRefGoogle Scholar
  51. 51.
    Crawford ES, Crawford JL, Safi HJ, Coselli JS, Hess KR, Brooks B, Norton HJ, Glaeser DH. Thoraco-abdominal aortic aneurysms : preoperative and intraoperative factors determining immediate and long-term results of operations in 605 patients. J Vasc Surg. 1986;3:389–404.PubMedCrossRefGoogle Scholar
  52. 52.
    Schepens MA, Defaw JJ, Hamerlinjck RP, De Geest R, Vermaulen FE. Surgical treatment of thoraco-abdominal aortic aneurysms by simple cross-clamping. Risk factors and late results. J Thorac Cardiovasc Surg. 1994;107:134–42.PubMedGoogle Scholar
  53. 53.
    Bachet J, Guilmet D, Rosier J, Cron C, Dreyfus G, Goudot B, Piquois A, Brodaty D, Dubois C, de Lendtdecker P. Protection of the spinal cord during surgery of thoraco-abdominal aortic aneurysms. Eur J Cardiothorac Surg. 1996;10:817–25.PubMedCrossRefGoogle Scholar
  54. 54.
    Wadouh F, Lindemann EM, Arndt CF, Hetzer R, Borst HG. The arteria radicularis magna anterior as a decisive factor influencing spinal cord damage during aortic occlusion. J Thorac Cardiovasc Surg. 1984;88:1–10.PubMedGoogle Scholar
  55. 55.
    Svensson LG, Rickards E, Coull A, Rogers G, Fimmel CJ, Hinter RA. Relationship of spinal cord blood flow to vascular anatomy during thoracic aortic cross-clamping and shunting. J Thorac Cardiovasc Surg. 1986;91:71–8.PubMedGoogle Scholar
  56. 56.
    Svensson LG, Hunter SJ, Von Ritter CM, Robinson MF, Groenenveld HT, Hinder RA, Rickards ES. Cross-clamping of the thoracic aorta. Influence of aortic shunts, laminectomy, papaverine, calcium channel blockers, allopurinol and superoxide dismutase on spinal cord blood flow and paraplegia in baboons. Ann Surg. 1986;204:38–47.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Svensson LG, Patel V, Robinson MF, et al. Influence of preservation or perfusion of intraoperatively identified spinal cord blood supply on spinal motor evoked potentials and paraplegia after aortic surgery. J Vasc Surg. 1991;13:355–65.PubMedCrossRefGoogle Scholar
  58. 58.
    Crawford ES, Svensson LG, Hess KR, et al. A prospective randomized study of cerebrospinal fluid drainage to prevent paraplegia after high-risk surgery on the thoraco-abdominal aorta. J Vasc Surg. 1991;17:36–45.CrossRefGoogle Scholar
  59. 59.
    Guilmet D, Rosier J, Richard T, Bachet J, Goudot B, Bical O. Chirurgie des anévrysmes thoraciques et thoraco-abdominaux intéressantl’artère d’Adamkiwiecz. Intérêt de l’hypothermie profonde. La nouv Press Med. 1981;10:3303–6.Google Scholar
  60. 60.
    Kieffer E, Richard T, Chiras J, Godet G, Cormier E. Preoperative spinal cord arteriography in aneurysmal disease of the descending thoracic and thoraco-abdominal aorta : preliminary results in 45 patients. Ann Vasc Surg. 1989;3:34–46.PubMedCrossRefGoogle Scholar
  61. 61.
    Heinemann MK, Brassel F, Herzo T, Dresler C, Becker H, Borst HG. The role of spinal angiography in operations on the thoracic aorta: myth or reality ? Ann Thorac Surg. 1998;65:346–51.PubMedCrossRefGoogle Scholar
  62. 62.
    Szilagyi DE, Hageman JH, Smith RE, et al. Spinal cord damage in surgery of the abdominal aorta. Surgery. 1978;83:38–56.PubMedGoogle Scholar
  63. 63.
    Kieffer E, Fukui S, Chiras J, Koskas F, Bahnini A, Cormier E. Spinal cord aerteriography: a safe adjunct before descending thoracic or thoraco-abdominal aortic aneurysmectomy. J Vasc Surg. 2002;35:262–8.PubMedCrossRefGoogle Scholar
  64. 64.
    Yamada N, Okita Y, Minayota K, Tagusari O, Ando M, Takamiya M, Kitamura S. Preoperative demonstration of the Adamkiewicz artery by magnetic resonance angiography in patients with descending or thoraco-abdominal aortic aneurysms. Eur J Cardiothorac Surg. 2000;18:104–11.PubMedCrossRefGoogle Scholar
  65. 65.
    Cunnigham JN, Lashinger JC, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoraco-abdominal aorta. Clinical observations and results. J Thorac Cardiovascv Surg. 1987;94:275–85.Google Scholar
  66. 66.
    Cohen AR, Young W, Ransohoff J. Intraspinal localization of SSEP. Neurosurgery. 1981;9:57–63.CrossRefGoogle Scholar
  67. 67.
    Robertazzi RR, Cunnigham JN. Monitoring of somatosensory evoked potentials : a primer on the intraoperative detection of spinal cord ischemia during aortic reconstructive surgery. Semin Thorac Cardiovasc Surg. 1998;10:11–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Cunnigham JN, Lashinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, Spencer FC. Measurement of spinal cord ischemia during operations upon the thoracic aorta. Initial clinical experience. Ann Surg. 1982;196:285–93.CrossRefGoogle Scholar
  69. 69.
    Shahin GM, Hamerlijnk RP, Shepens MA et al. Upper and lower extremity somatosensory evoked potential during surgery for aneurysms of the descending thoracic aorta. Eur J Thorac Cardiovasc Surg 1996;10 :229-234.Google Scholar
  70. 70.
    Guerit JM, Verheist R, Rubay J, Dion R. Multilevel somatosensory evoked potentials for spinal cord monitoring I descending thoracic and thoraco-abdominal aortic surgery. Eur J Thorac Cardiovasc Surg. 1996;10:93–103.CrossRefGoogle Scholar
  71. 71.
    Schepens MA, Boezeman EH, Hamerlijnk RP, Beek H, Vermeulen FE. Somatosensory evoked potentials during exclusion and reperfusion of critical aortic segments in thoraco-abdominal aortic aneurysm surgery. J Card Surg. 1994;9:692–702.PubMedCrossRefGoogle Scholar
  72. 72.
    Galla JD, Ergin MA, Lansman SL, McCullough JN, Nguyen KH, Spievogel D, Klein JJ, Griepp RB. Use of somatosensory evoked potentials for thoracic and thoraco-abdominal aortic resections. Ann Thorac Surg. 1999;67:S1947–52.CrossRefGoogle Scholar
  73. 73.
    Guerit JM, Witdoeckt C, Verhelst R, Matta AJ, Jaquet LM, Dion RA. Sensitivity, specificity and surgical impact of somatosensory evoked potentials in descending aortic surgery. Ann Thorac Surg. 1999;67:S1943–6.CrossRefGoogle Scholar
  74. 74.
    De Hann P, Kalkmann CJ, de Mol BA. Efficacy of trans-cranial motor evoked potentials to detect spinal cord ischemia during operations for thoraco-abdominal aneurysm. J Thorac Cardiovasc Surg. 1997;13:355–65.Google Scholar
  75. 75.
    Jacobs MJ, Meylarets SA, De Hann P, De Mol BA, Kalkman CJ. Strategies to prevent neurologic deficit based on motor evoked potentials in type I and II thoraco-abdominal aortic aneurysm repair. J Vasc Surg. 1999;29:48–59.PubMedCrossRefGoogle Scholar
  76. 76.
    Svensson LG, Crawford ES. Complications of distal aorta operations. Cardiovascular and vascular diseases of the aorta. Philadelphia: WB Saunders. p. 423.Google Scholar
  77. 77.
    Svensson LG, Patel V, Coselli JS, Crawford ES. Preliminary report of localization of spinal cord blood supply by hydrogen during aortic operations. Ann Thorac Surg. 1990;49:528–36.PubMedCrossRefGoogle Scholar
  78. 78.
    Etz CD, Luehr M, von Aspern KV, Gudehus S, Luehr M, Girrbach FF, et al. Near-infrared spectroscopy monitoring of the collateral network prior to, during, and after thoracoabdominal aortic repair: a pilot study. Eur J Vasc Endovasc Surg. 2013;46:651–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Cooley DA, Baldwin RT. Technique of open distal anastomosis for repair of descending thoracic aortic aneurysms. Ann Thorac Surg. 1992;54:932–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Cooley DA, Golino A, Frazier OH. Single-clamp technique for aneurysms of the descending thoracic aorta : report of 132 consecutive cases. Eur J Cardiothorac Surg. 2000;18:162–7.PubMedCrossRefGoogle Scholar
  81. 81.
    Lang-Lazdunski L, Bachet J, Rogers C. Repair of the descending thoracic aorta: impact of open distal anastomosis technique on spinal cord perfusion, neurological outcome and spinal cord histopathology. Eur J Cardiothorac Surg. 2004;26:351–35.PubMedCrossRefGoogle Scholar
  82. 82.
    Crawford ES, Mizrahi EM, Hess KR, Coselli JS, Safi HJ, Patel V. The impact of distal aortic perfusion and somatosensory evoked potential monitoring on prevention of paraplegia after aortic aneurysm operation. J Thorac Cardiovasc Surg. 1988;95:357–67.PubMedGoogle Scholar
  83. 83.
    Gharagozloo F, larson J, Dansmann MJ, Neville RF, Gomes MN. Spinal cord protection during surgical procedures on the descending thoracic and thoraco-abdominal aorta. Chest. 1996;109:799–809.CrossRefGoogle Scholar
  84. 84.
    Gott VF, Whiffen JD, Dutton RC. Heparin bonding on graphite surfaces. Science. 1963;142:1297.PubMedCrossRefGoogle Scholar
  85. 85.
    Verdant A. Surgery of the descending thoracic aorta: spinal cord protection with the Gott shunt. Updated 1995. Ann Thorac Surg. 1995;60:1151–2.PubMedCrossRefGoogle Scholar
  86. 86.
    Duhaylongsod FG, Glower DD, Wolfe WG. Acute traumatic aortic aneurysm: the Duke experience from 1970 to 1990. J Vasc Surg. 1992;15:331–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Hingelberg AD, Logan DL, Akins CW, Buckley LJ, Dagget WM, Vlahakas GJ, Torchiana DF. Blunt injuries of the thoracic aorta. Ann Thorac Surg. 1992;53:233–9.CrossRefGoogle Scholar
  88. 88.
    Robertazi RR, Acinapura AJ. The efficacy of left atrial to femoral artery bypass in the prevention of spinal cord ischemia during aortic surgery. Semin Thorac Cardiovasc Surg. 1998;10:67–71.CrossRefGoogle Scholar
  89. 89.
    Schepens MA, Vermeulen FE, Morshuis WJ, Dossche KM. Impact of left heart bypass on the results of thoraco-abdominal aortic aneurysm repair. Ann Thorac Surg. 1999;67:1936–47.CrossRefGoogle Scholar
  90. 90.
    Ferhenbacher JW, McCready RA, Hortmuth DA, Beckman DJ, Halbrook HG, Herod GT, Pitman JN, Siderys H. One-stage segmental resection of extensive thoraco-abdominal aneurysms with left-sided heart bypass. J Vasc Surg. 1993;18:366–71.CrossRefGoogle Scholar
  91. 91.
    Svensson LG, Crawford ES, Hess KR, Coselli JS, Safi HJ, Patel V. Variables predictive of outcome in 832 patients undergoing repairs of the descending thoracic aorta. Chest. 1993;104:1248–53.CrossRefGoogle Scholar
  92. 92.
    Lawrie GM, Earle N, DeBakey ME. Evolution of surgical techniques for aneurysms of the descending thoracic aorta : twenty-nine years experience with 659 patients. J Card Surg. 1994;9:648–61.PubMedCrossRefGoogle Scholar
  93. 93.
    Borst HG, Jurmann M, Buhner B, Laas J. Risk of replacement of descending aorta with a standardized left heart bypass technique. J Thorac Cardiovasc Surg. 1994;107:126–33.PubMedGoogle Scholar
  94. 94.
    Najafi H. Descending aortic aneurysmectomy without adjuncts to avoid ischemia 1993 update. Ann Thorac Surg. 1993;55:1042–5.PubMedCrossRefGoogle Scholar
  95. 95.
    Goudot B, Bachet J, Bical O, Laurian C, Guilmet D. Chirurgie de l’aorte thoracique descendante. Dérivation partielle entre l’artère pulmonaire et l’artère fémorale. Nouv Press Med. 1980;9:1703–4.Google Scholar
  96. 96.
    Hollier LH, Symmonds JB, Pairolero PC, et al. Thoraco-abdominal aortic aneurysm repair: analysis of postoperative morbidity. Arch Surg. 1988;123:871–5.PubMedCrossRefGoogle Scholar
  97. 97.
    Safi HJ, Miller CC, Carr C, Iliopoulos DC, Dorsay DA, Baldwin JC. Importance of intercostal artery reattachment during thoraco-abdominal aortic aneurysm repair. J Vasc Surg. 1998;27:58–68.CrossRefGoogle Scholar
  98. 98.
    Acher CW, Wynn MM, Mell MW, Telera G, Hoch JR. A quantitative assessment of the impact of intercostal artery reimplantation on paralysis risk in thoracoabdominal aortic aneurysm repair. Ann Surg. 2008;248:529–40.PubMedGoogle Scholar
  99. 99.
    Furukawa K, Kamohara K, Nojiri J, Egashira Y, Okazaki Y, Kudo S, et al. Operative strategy for descending and thoracoabdominal aneurysm repair with preoperative demonstration of the Adamkiewicz artery. Ann Thorac Surg. 2010;90:1840–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Svensson LG, Crawford ES. Aortic dissection and aortic aneurysm surgery: clinical observations, experimental investigations and statistical analyses. Pat II. Curr Prob Surg. 1992;29:915–1057.CrossRefGoogle Scholar
  101. 101.
    Maughan RE, Mohan C, Levy R, Cunnigham JN, Jacobowitz I, Marini C. Effects of exsanguination and sodium nitroprusside on compliance of the spinal canal during aortic occlusion. J Surg Res. 1992;52:571–6.PubMedCrossRefGoogle Scholar
  102. 102.
    McCullough JL, Hollier LH, Nugent M. Paraplegia after thoracic occlusion: influence of cerebrospinal fluid drainage. J Vasc Surg. 1988;7:153–60.PubMedCrossRefGoogle Scholar
  103. 103.
    Acher CW, Wynn MM, Hoch JR, Popic PM, Turnispeed WD. Combined use of CSF drainage and naloxone reduces the risk of paraplegia in thoraco-abdominal aneurysm repair. J Vasc Surg. 1994;19:236–46.PubMedCrossRefGoogle Scholar
  104. 104.
    Svensson LG, Hess KR, D’Agostino RS, Entrup RH, Hreib K, Kimmel WA, Naldony E, Sahian DM. Reduction of neurologic injury after high-risk thoraco-abdominal aortic operations. Ann Thorac Surg. 1998;66:132–8.PubMedCrossRefGoogle Scholar
  105. 105.
    Safi HJ, Bartoli S, Hess KR, Shenaq SS, Viets JR, Butl GR, Scheinbaum R, Derr HK, Maulsby R, Rivera VM. Neurologic deficit in patients at high risk with thoraco-abdominal aortic aneurysms: the role of cerebral spinal fluid drainage and distal perfusion. J Vasc Surg. 1994;20:434–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Etz CD, Luehr M, Kari FA, Bodian CA, Smego D, Plestis KA, et al. Paraplegia after extensive thoracic and thoracoabdominal aortic aneurysm repair: does critical spinal cord ischemia occur postoperatively? J Thorac Cardiovasc Surg. 2008;135:324–30.PubMedCrossRefGoogle Scholar
  107. 107.
    Schnell L, Schneider R, Kolbeck R, Barde Y-A. Neurotrophin-3 enhances sprouting of cortico-spinal tract during development and after adult spinal cord lesion. Nature. 1994;367:170–3.PubMedCrossRefGoogle Scholar
  108. 108.
    Tsirka S, Gualandris A, Amaral DG, Strickland S. Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature. 1995;377:340–1.PubMedCrossRefGoogle Scholar
  109. 109.
    Hagerdal M, Harp J, Nilson L, Siesjö BK. The effect of induced hypothermia upon oxygen consumption in rat brain. J Neurochem. 1975;24:311–6.PubMedCrossRefGoogle Scholar
  110. 110.
    Marsala M, Vanicky I, Yaksh TL. Effects of graded hypothermia (27°C to 34°C) on behavioral function, histopathology and spinal cord blood flow after spinal cord ischemia in rat. Stroke. 1994;25:2038–46.PubMedCrossRefGoogle Scholar
  111. 111.
    Nakashima K, Todd MM, Warner DS. The relationship between cerebral metabolic rate and ischemic depolarization: a comparison of the effects of hypothermia, pentobarbital and isoflurane. Anaesthesiology. 1995;82:1199–208.CrossRefGoogle Scholar
  112. 112.
    Fox SL, Blackstone E, Kirklin JW. Relationship of brain blood flow and oxygen consumption to perfusion flow rate during profoundly hypothermic cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1984;87:658–64.PubMedGoogle Scholar
  113. 113.
    Michenfelder JD, Milde JH. The relationship among canine brain temperature, metabolism and renal function during hypothermia. Anaesthesiology. 1991;75:1130–6.CrossRefGoogle Scholar
  114. 114.
    Busto R, Globus MY, Dietrich R, et al. Effects of mild hypothermia on ischemia induced release of neurotransmitters and free fatty acids in rat brain. Stroke. 1989;20:904–10.PubMedCrossRefGoogle Scholar
  115. 115.
    Ginsberg MD, Globus MY, Dietrich R, et al. Temperature modulation in ischemic brain injury: a synthesis of recent advances. Prog Brain Res. 1993;96:13–22.PubMedCrossRefGoogle Scholar
  116. 116.
    Pontius RG, Brockman HL, Hardy EG, Cooley DA, De Bakey ME. The use of hypothermia in the prevention of paraplegia following temporary aortic occlusion: experimental observations. Surgery. 1954;36:33–8.PubMedGoogle Scholar
  117. 117.
    Owens JC, Prevedel AD, Swan H, et al. Prolonged experimental occlusion of the thoracic aorta during hypothermia. Arch Surg. 1955;70:95–7.CrossRefGoogle Scholar
  118. 118.
    Parkins WM, Ben M, Vars HM, et al. Tolerance of temporary occlusion of thoracic aorta in normothermic and hypothermic dog. Surgery. 1955;38:38–47.PubMedGoogle Scholar
  119. 119.
    De Bakey ME, Cooley DA, Creech O Jr. Resection of the aorta for aneurysms and occlusive disease with particular reference to the use of hypothermia. J Am Coll Cardiol. 1955;5:153–7.Google Scholar
  120. 120.
    Von Segesser LK, Marty B, Mueller X, Ruchat P, Gersbach P, Stump F, Fisher A. Active cooling during open repair of thoraco-abdominal aortic aneurysms improves outcome. Eur J Cardiothorac Surg. 2001;19:411–5.CrossRefGoogle Scholar
  121. 121.
    Borst HG, Scauding A, Rudolph W. Arterio-venous fistula of the aortic arch: repair during deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 1964;48:433–7.Google Scholar
  122. 122.
    Griepp RB, Stinson EB, Hollingsworth JF, Buchler D. Prosthetic replacement of the aortic arch. J Thorac Cardiovasc Surg. 1975;70:1051–63.Google Scholar
  123. 123.
    Crawford ES, Saleh SA. Transverse aortic arch aneurysm: improved results of treatment employing new modifications of aortic reconstruction and hypothermic circulatory arrest. Ann Surg. 1981;194:180–8.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Kouchoukos NT, Wareing TH, Izomuto H, Klausing W, Abboud N. Elective hypothermic cardiopulmonary bypass and circulatory arrest for spinal cord protection during operations on the thoraco-abdominal aorta. J Thorac Cardiovasc Surg. 1990;99:659–64.Google Scholar
  125. 125.
    Rokkas CK, Sundaresan S, Shuman TA, Palazzo RS, Nitta T, Despotis GJ, Burns T, Wareing TH, Kouchoukos NT. Profound systemic hypothermia protects the spinal cord in a primate model of spinal cord ischemia. J Thorac Cardiovasc Surg. 1993;106:1024–35.PubMedGoogle Scholar
  126. 126.
    Kouchoukos NT. Spinal cord ischemic injury: is it preventable? Semin Thorac Cardiovasc Surg. 1991;3:323–8.PubMedGoogle Scholar
  127. 127.
    Kieffer E, Koskas F, Walden R, Godet G, Le Blevec D, Bahnini A, Bertrand M, Fleuron MH. Hypothermic circulatory arrest for thoracic aneurysmectomy through left-sided thoracotomy. J Vasc Surg. 1994;19:457–61.PubMedCrossRefGoogle Scholar
  128. 128.
    Kouchoukos NT, Masetti P, Rokkas CK, Murphy SF. Hypothermic cardiopulmonary bypass and circulatory arrest for operations on the descending thoracic and thoraco-abdominal aorta. Ann Thorac Surg. 2002;74:S1885–7.PubMedCrossRefGoogle Scholar
  129. 129.
    Kouchoukos NT, Kulil A, Castner CF. Outcomes after thoraco-abdominal aortic aneurysm repair using hypothermic circulatory arrest. J Thorac Cardiovasc Surg. 2013;145:S139–41.PubMedCrossRefGoogle Scholar
  130. 130.
    Fehrenbacher JW, Siderys H, Terry C, Kuhn J, Corvera JS. Early and late results of descending thoracic and thoracoabdominal aortic aneurysm open repair with deep hypothermia and circulatory arrest. J Thorac Cardiovasc Surg. 2010;140:S154–60.PubMedCrossRefGoogle Scholar
  131. 131.
    Emery M, Lucas JH. Ultrastructural damage and neuritic beading in cold-stressed spinal neurons with comparison to NMDA and A23187 toxicity. Brain Res. 1995;692:161–73.PubMedCrossRefGoogle Scholar
  132. 132.
    Negrin JJ. Selective local hypothermia in neurosurgery. NY State J Med. 1961;1:2951–65.Google Scholar
  133. 133.
    Acosta-Rua GJ. Treatment of traumatic paraplegic patients by localized cooling of the spinal cord. J Iowa Med Soc. 1970;LX:326–8.Google Scholar
  134. 134.
    Lucas JH, Wang GF, Gross GW. Paradoxical effects of hypothermia on survival of lesioned and uninjured mammalian spinal neurons. Brain Res. 1990;517:354–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Bissonnette B, Pellerin L, Ravussin P, Daven VB, Magistretti PJ. Deep hypothermia and re-warming alters glutamate levels and glycogen content in cultured astrocytes. Anaesthesiology. 1999;91:1763–9.CrossRefGoogle Scholar
  136. 136.
    Albin MS, White RJ, Acosta-Rua GJ, et al. Study of functional recovery produced by delayed localized cooling after spinal cord injury in primates. J Neurosurg. 1968;29:113–20.PubMedCrossRefGoogle Scholar
  137. 137.
    Colon R, Frazier OH, Cooley DA, McAllister HA. Hypothermic regional perfusion for protection of the spinal cord during periods of ischemia. Ann Thorac Surg. 1987;43:639–43.PubMedCrossRefGoogle Scholar
  138. 138.
    Kaschner AG, Sandmann W, Kniemeyer HW, et al. Evaluation of epidural perfusion cooling to protect the spinal cord during thoracic aortic cross-clamping: monitoring of evoked electrogram. J Cardiovasc Surg. 1985;26:129–35.Google Scholar
  139. 139.
    Svenssson LG, Crawfoprd ES, Patel V, Mc Lean TR, Jones JW, De Bakey ME. Spinal oxygenation, blood supply localization, cooling and function with aortic clamping. Ann Thorac Surg. 1992;54:74–9.CrossRefGoogle Scholar
  140. 140.
    Berguer R, Porto J, Fedorenko B, Dragovic L. Selective deep hypothermia of the spinal cord prevents paraplegia after aortic cross-clamping in the dog model. J Vasc Surg. 1992;15:62–71.PubMedCrossRefGoogle Scholar
  141. 141.
    Cambria RP, Brewster DC, Moncure AC, et al. Recent experience with thoraco-abdominal aneurysms repair. Arch Surg. 1989;124:620–4.PubMedCrossRefGoogle Scholar
  142. 142.
    Cambria RP, Davison JK, Carter C, Brewster DC, Chang Y, Clarck KA, Atamian S. Epidural cooling for spinal protection during thoraco-abdominal repair: a five-year experience. J Vasc Surg. 2000;31:1093–102.PubMedCrossRefGoogle Scholar
  143. 143.
    Del Rossi AJ, Cernaianu AC, Cilley JH, Spence RK, Camishion RC, Yu Y, Costabile JP, Vertrees RA. Preventive effect of fluosol-DA for paraplegia encountered after surgical treatment of the thoracic aorta. J Thorac Cardiovasc Surg. 1990;99:665–9.Google Scholar
  144. 144.
    Maugham RE, Mohan C, Nathan IM, Damiani P, Jacobowitz IJ, Cunnigham JN, Marini P. Intrathecal perfusion of an oxygenated perfluorocarbon prevents paraplegia after aortic occlusion. Ann Thorac Surg. 1992;54:818–25.CrossRefGoogle Scholar
  145. 145.
    Lashinger JC, Cunnigham JN, Baumann FG, Cooper MM, Krieger KH, Spencer FC. Monitoring of somatosensory evoked potentials during surgical procedures on the thoraco-abdominal aorta. III: intraoperative identification of vessels critical to spinal cord blood supply. J Thorac Cardiovasc Surg. 1987;87:271–4.Google Scholar
  146. 146.
    Galla JD, Ergin MA, Sadeghi AM, Lansmann SL, Danto J, Griepp RB. A new technique using somatosensory evoked potential guidance during descending and thoraco-abdominal aortic repairs. J Card Surg. 1994;9:662–72.PubMedCrossRefGoogle Scholar
  147. 147.
    Biglioli P, Roberto M, Cannata A, Parolari A, Fumero A, Grillo F, Maggioni M, Coggi G, Spirito R. Upper and lower spinal cord blood supply: the continuity of the anterior spinal artery and the relevance of the lumbar arteries. J Thorac Cardiovasc Surg. 2004;127:1188–92.PubMedCrossRefGoogle Scholar
  148. 148.
    Rokkas CK: discussion of Griepp RB, Ergin MA, Galla JD et al. Looking for the artery of Adamkiewicz: a quest to minimize paraplegia after operations for aneurysms of the descending thoracic and thoracoabdominal aorta. J Thorac Cardiovasc Surg.1996;112:1215.Google Scholar
  149. 149.
    Dommisse GF. The arteries and veins of the human spinal cord from birth. Edinburgh: Churchill Livingstone; 1975.Google Scholar
  150. 150.
    Griepp RB, Griepp E. Spinal cord perfusion and protection during descending thoracic and thoraco-abdominal aortic surgery: the collateral network concept. Ann Thorac Surg. 2007;83:S865–9.PubMedCrossRefGoogle Scholar
  151. 151.
    Etz CD, Halstead JC, Spielvogel D, Shahani R, Lazala R, Homann TM, et al. Thoracic and thoracoabdominal aneurysm repair: is reimplantation of spinal cord arteries a waste of time? Ann Thorac Surg. 2006;82:1670–7.PubMedCrossRefGoogle Scholar
  152. 152.
    Etz CD, Kari FA, Mueller CS, Silovitz D, Brenner RM, Lin HM, et al. The collateral network concept: a reassessment of the anatomy of spinal cord perfusion. J Thorac Cardiovasc Surg. 2011;141:1020–8.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Etz CD, Kari FA, Mueller CS, Brenner RM, Lin HM, Griepp RB. The collateral network concept: remodeling of the arterial collateral network after experimental segmental artery sacrifice. J Thorac Cardiovasc Surg. 2011;141:1029–36.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Zoli S, Etz CD, Roder F, Brenner RM, Bodian CA, Kleinman G, et al. Experimental two-stage simulated repair of extensive thoracoabdominal aneurysms reduces paraplegia risk. Ann Thorac Surg 2010;90:722-729.PubMedCrossRefGoogle Scholar
  155. 155.
    Etz CD, Zoli S, Mueller CS, Bodian CA, Di Luozzo G, Lazala R, et al. Staged repair significantly reduces paraplegia rate after extensive thoracoabdominal aortic aneurysm repair. J Thorac Cardiovasc Surg. 2010;139:1464–72.PubMedCrossRefGoogle Scholar
  156. 156.
    Luehr M, Salameh A, Haunschmid J, Hoyer A, Girrnach FF, von Aspern K, et al. Minimally invasive segmental artery coil embolization for preconditioning of the spinal cord collateral network before one-stage descending and thoracoabdominal aneurysm repair. Innovations (Phila). 2014;9:60–5.Google Scholar
  157. 157.
    De Haan P, Kalkman CJ, Jacobs MJ. Pharmacologic neuroprotection in experimental spinal cord ischemia: a systematic review. J Neurosurg Anesthesiol. 2001;13:3–12.PubMedCrossRefGoogle Scholar
  158. 158.
    Mauney MC, Blackbourne LH, Langenburg SE, et al. Prevention of spinal cord injury after repair of the thoracic or thoracoabdominal aorta. Ann Thorac Surg. 1995;59:245–51.PubMedCrossRefGoogle Scholar
  159. 159.
    Marini CP, Cunningham JN. Issues surrounding spinal cord protection. Adv Card Surg. 1993;4:89–107.PubMedGoogle Scholar
  160. 160.
    Lang-Lazdunski L, Bachet J. Pharmacological spinal cord protection with magnesium during replacement of the thoracic and thoracoabdominal aorta. Ann Thorac Surg. 2001;72:2180–1.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Kanellopoulos GK, Kato H, Wu Y, et al. Neuronal cell death in the ischemic spinal cord : the effect of methylprednisolone. Ann Thorac Surg. 1997;64:1279–86.PubMedCrossRefPubMedCentralGoogle Scholar
  162. 162.
    Svensson LG, Stewart RW, Cosgrove DM, et al. Intrathecal papaverine for the prevention of paraplegia after operation on the thoracic or thoracoabdominal aorta. J Thorac Cardiovasc Surg. 1988;96:823–9.PubMedGoogle Scholar
  163. 163.
    Baskin DS, Hosobuchi Y. Naloxone reversal of ischemic neurologic deficit in man. Lancet. 1981;2:272–5.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Bracken MB, Shepard MJ, Collins WF, et al. A randomized controlled trial of methylprednisolone or naloxone in the treatment of acute spinal cord injury. N Engl J Med. 1990;322:1405–11.CrossRefGoogle Scholar
  165. 165.
    Vacanti FX, Ames A. Mild hypothermia and mg2+ protect against irreversible damage during CNS ischemia. Stroke. 1984;15:695–8.PubMedCrossRefGoogle Scholar
  166. 166.
    Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, Bachet JE, Carrel TP, Grabenwöger M, Schepens MA, Czerny M. Contemporary spinal cord protection during thoracic and thoraco-abdominal aortic surgery and endovascular aortic repair. A position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery. Eur J Cardiothorac Surg. 2015;47:943–57.CrossRefGoogle Scholar
  167. 167.
    Amato A, Stolf N. Anatomy of spinal blood supply. J Vasc Bras. 2015;14(3):248–52.Google Scholar
  168. 168.
    Nojiri J, et al. The Adamkiewicz artery: demonstration by intra-arterial computed tomographic angiography. Eur J Cardiothorac Surg. 2007;31(2):249–55.PubMedCrossRefGoogle Scholar
  169. 169.
    Sun JP, Svensson LG. Ischemia, reperfusion and no-reflow phenomenon. In: Svensson LG, Cawford ES, editors. Cardiovascular and vascular diseases of the aorta. Philadelphia: W.B. Saunders; 1997.Google Scholar
  170. 170.
    Estrera AL, et al. Adjuncts during surgery of the thoracoabdominal aorta and their impact on neurologic outcome: distal aortic perfusion and cerebrospinal fluid drainage. Multimed Man Cardiothorac Surg. 2006; https://doi.org/10.1510/mmcts.2006.001933.
  171. 171.
    Etz CD, Weigang E, Hartert M, Lonn L, Mestres CA, Di Bartolomeo R, Bachet JE, Carrel TP, Grabenwöger M, Schepens MA, Czerny M. Contemporary spinal cord protection during thoracic and thoraco-abdominal aortic surgery and endovascular aortic repair. A position paper of the vascular domain of the European Association for Cardio-Thoracic Surgery. Eur J Cardiothorac Surg. 2015;47:943–57.PubMedCrossRefGoogle Scholar
  172. 172.
    Kieffer E. Encyclopédie Médico-Chirurgicale. Techniques chirugicales. Chirurgie de l’Aorte Thoraco-Abdominale. Paris: Elsevier; 1993. p. 43–150.Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Jean Bachet
    • 1
  1. 1.ADETECSuresnesFrance

Personalised recommendations