Advertisement

Recommendations on Thresholds for Elective Surgery for Thoracic Ascending Aortic Aneurysms

  • Loren F. HiratzkaEmail author
Chapter

Abstract

The goal of elective surgical repair of ascending aortic aneurysms is to prevent catastrophic aortic dissection and rupture. The timing of elective surgical repair for ascending aortic aneurysms is based on measurements of aortic diameter. The general threshold of 5.5cm is based on the observation that the incidence of aortic dissection and rupture rises significantly as aortic diameter approaches 6.0 cm or more. A variety of syndromic and non-syndromic connective tissue conditions predispose to aortic dissection and rupture at a smaller diameter. Identification of patients with these disorders is important as the aortic diameter threshold for recommending surgical repair must be lower than 5.5 cm. For an individual patient we must balance the risk of surgical repair, which is relatively low in experienced centers, against the risks of catastrophic dissection and rupture.

Keywords

Guidelines Imaging Surgery Genetics Turner Bicuspid aortic valve Dissection 

References

  1. 1.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121:266–369.Google Scholar
  2. 2.
    Wolak A, Gransar H, Thomson LJ, et al. Aortic size assessment by noncontrast cardiac computed tomography: normal limits by age, gender, and body surface area. J Am Coll Cardiol Imaging. 2008;1:200–9.CrossRefGoogle Scholar
  3. 3.
    Hannuksela M, Lundqvist S, Carlberg B. Thoracic aorta: dilated or not? Scand Cardiovasc J. 2006;40:175–8.CrossRefGoogle Scholar
  4. 4.
    Rogers IS, Massaro JM, Truong QA, Mahabadi AA, Kriegel MF, Fox CS, et al. Distribution, determinants, and normal reference values of thoracic and abdominal aortic diameters by computed tomography (from the Framingham Heart Study). Am J Cardiol. 2013;111:1510–6.CrossRefGoogle Scholar
  5. 5.
    Daviess RR, Gallo A, Coady MA, Tellides G, Botta DM, Burke B, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81:169–77.CrossRefGoogle Scholar
  6. 6.
    Svensson LG, Khitin L. Aortic cross-sectional area/height ratio timing of aortic surgery in asymptomatic patients with Marfan syndrome. J Thorac Cardiovasc Surg. 2002;123:360–1.CrossRefGoogle Scholar
  7. 7.
    Svensson LG, Kim KH, Lytle BW, et al. Relationship of aortic cross-sectional area to height ratio and the risk of aortic dissection in patients with bicuspid aortic valves. J Thorac Cardiovasc Surg. 2003;126:892–3.CrossRefGoogle Scholar
  8. 8.
    Elefteriades JA. Natural history of thoracic aortic aneurysms: indications for surgery, and surgical versus nonsurgical risks. Ann Thorac Surg. 2002;74:S1877–80.CrossRefGoogle Scholar
  9. 9.
    Deitz HC, Pyeritz HE. Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet. 1995;4:S1799–809.CrossRefGoogle Scholar
  10. 10.
    van Karnebeek CD, Naeff MS, Mulder BJ, et al. Natural history of cardiovascular manifestations in Marfan syndrome. Arch Dis Child. 2001;84:129–37.CrossRefGoogle Scholar
  11. 11.
    Roman MJ, Rosen SE, Kramer-Fox R, et al. Prognostic significance of the pattern of aortic root dilation in the Marfan syndrome. J Am Coll Cardiol. 1993;22:1470–6.CrossRefGoogle Scholar
  12. 12.
    Shores J, Berger KR, Murphy EA, et al. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330:1335–41.CrossRefGoogle Scholar
  13. 13.
    Milewicz DM, Dietz HC, Miller DC. Treatment of aortic disease in patients with Marfan syndrome. Circulation. 2005;111:150–7.CrossRefGoogle Scholar
  14. 14.
    Rossiter JP, Repke JT, Morales AJ, et al. A prospective longitudinal evaluation of pregnancy in the Marfan syndrome. Am J Obstet Gynecol. 1995;173:1599–606.CrossRefGoogle Scholar
  15. 15.
    Sakaguchi M, Kitahara H, Watanabe T, et al. Successful surgical treatment for acute aortic dissection in pregnancy with Marfan’s syndrome. Jpn J Thorac Cardiovasc Surg. 2005;53:220–2.CrossRefGoogle Scholar
  16. 16.
    Singh KK, Rommel K, Mishra A, et al. TGFBR1 and TGFBR2 mutations in patients with features of Marfan syndrome and Loeys-Dietz syndrome. Hum Mutat. 2006;27:770–7.CrossRefGoogle Scholar
  17. 17.
    Loeys BL, Chen J, Neptune ER, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37:275–81.CrossRefGoogle Scholar
  18. 18.
    Loeys BL, Schwarze U, Holm T, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med. 2006;355:788–98.CrossRefGoogle Scholar
  19. 19.
    Pepin M, Schwarze U, Superti-Furga A, et al. Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med. 2000;342:673–80.CrossRefGoogle Scholar
  20. 20.
    Ascione R, Gomes WJ, Bates M, et al. Emergency repair of type A aortic dissection in type IV Ehlers-Danlos syndrome. Cardiovasc Surg. 2000;8:75–8.CrossRefGoogle Scholar
  21. 21.
    Sybert VP. Cardiovascular malformations and complications in Turner syndrome. Pediatrics. 1998;101:11.CrossRefGoogle Scholar
  22. 22.
    Gotzsche CO, Krag-Olsen B, Nielsen J, et al. Prevalence of cardiovascular malformations and association with karyotypes in Turner’s syndrome. Arch Dis Child. 1994;71:433–6.CrossRefGoogle Scholar
  23. 23.
    Ostberg JE, Brookes JA, McCarthy C, et al. A comparison of echocardiography and magnetic resonance imaging in cardiovascular screening of adults with Turner syndrome. J Clin Endocrinol Metab. 2004;89:5966–71.CrossRefGoogle Scholar
  24. 24.
    Lin AE, Silberbach M. Focus on the heart and aorta in Turner syndrome. J Pediatr. 2007;150:572–4.CrossRefGoogle Scholar
  25. 25.
    Carlson M, Airhart N, Lopez L, Silberbach M. Moderate aortic enlargement and bicuspid aortic valve are associate with aortic dissection in Turner syndrome. Circulation. 2012;126:2220–6.CrossRefGoogle Scholar
  26. 26.
    Matura LA, Ho VB, Rosing DR, Bondy CA. Aortic dilatation and dissection in Turner syndrome. Circulation. 2007;116:1663–70.CrossRefGoogle Scholar
  27. 27.
    Bondy CA. Aortic dissection in Turner syndrome. Curr Opin Cardiol. 2008;23:519–26.CrossRefGoogle Scholar
  28. 28.
    Svensson LG, Blackstone EH, Feng J, et al. Are Marfan syndrome and marfanoid patients distinguishable on long-term follow-up? Ann Thorac Surg. 2007;83:1067–74.CrossRefGoogle Scholar
  29. 29.
    Wenstrup RJ, Meyer RA, Lyle JS, et al. Prevalence of aortic root dilation in the Ehlers-Danlos syndrome. Genet Med. 2002;4:112–7.CrossRefGoogle Scholar
  30. 30.
    Gupta PA, Putnam EA, Carmical SG, et al. Ten novel FBN2 mutations in congenital contractural arachnodactyly: delineation of the molecular pathogenesis and clinical phenotype. Hum Mutat. 2002;19:39–48.CrossRefGoogle Scholar
  31. 31.
    Gupta PA, Wallis DD, Chin TO, et al. FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly. J Med Genet. 2004;41:56.CrossRefGoogle Scholar
  32. 32.
    Adeola T, Adeleye O, Potts JL, et al. Thoracic aortic dissection in a patient with autosomal dominant polycystic kidney disease. J Natl Med Assoc. 2001;93:282–7.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Lee CC, Chang WT, Fang CC, et al. Sudden death caused by dissecting thoracic aortic aneurysm in a patient with autosomal dominant polycystic kidney disease. Resuscitation. 2004;63:93–6.CrossRefGoogle Scholar
  34. 34.
    Purnell R, Williams I, Von Oppell U, et al. Giant aneurysms of the sinuses of Valsalva and aortic regurgitation in a patient with Noonan’s syndrome. Eur J Cardiothorac Surg. 2005;28:346–8.CrossRefGoogle Scholar
  35. 35.
    Morgan JM, Coupe MO, Honey M, et al. Aneurysms of the sinuses of Valsalva in Noonan’s syndrome. Eur Heart J. 1989;10:190–3.CrossRefGoogle Scholar
  36. 36.
    Shachter N, Perloff JK, Mulder DG. Aortic dissection in Noonan’s syndrome (46 XY turner). Am J Cardiol. 1984;54:464–5.CrossRefGoogle Scholar
  37. 37.
    McElhinney DB, Krantz ID, Bason L, et al. Analysis of cardiovascular phenotype and genotype-phenotype correlation in individuals with a JAG1 mutation and/or Alagille syndrome. Circulation. 2002;106:2567–74.CrossRefGoogle Scholar
  38. 38.
    Coady MA, Davies RR, Roberts M, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134:361–7.CrossRefGoogle Scholar
  39. 39.
    Biddinger A, Rocklin M, Coselli J, et al. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;25:506–11.CrossRefGoogle Scholar
  40. 40.
    Milewicz DM, Chen H, Park ES, et al. Reduced penetrance and variable expressivity of familial thoracic aortic aneurysms/dissections. Am J Cardiol. 1998;82:474–9.CrossRefGoogle Scholar
  41. 41.
    Guo D, Pannu H, Tran-Fadula V, et al. Mutations in smooth muscle alpha-actin (ACTA2). Nat Genet. 2007;39:1488–93.CrossRefGoogle Scholar
  42. 42.
    Zhu L, Vranckx R, Khau Van Kien P, et al. Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet. 2006;38:343–9.CrossRefGoogle Scholar
  43. 43.
    Guo DC, Papke CL, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84:617–27.CrossRefGoogle Scholar
  44. 44.
    Guo D, Hasham S, Kuang SQ, et al. Familial thoracic aortic aneurysms and dissections: genetic heterogeneity with a major locus mapping to 5q13-14. Circulation. 2001;103:2461–8.CrossRefGoogle Scholar
  45. 45.
    Hasham SN, Willing MC, Guo DC, et al. Mapping a locus for familial thoracic aortic aneurysms and dissections (TAAD2) to 3p24 –25. Circulation. 2003;107:3184–90.CrossRefGoogle Scholar
  46. 46.
    Vaughan CJ, Casey M, He J, et al. Identification of a chromosome 11q23.2-q24 locus for familial aortic aneurysm disease, a genetically heterogeneous disorder. Circulation. 2001;103:2469–75.CrossRefGoogle Scholar
  47. 47.
    Braverman AC, Guven H, Beardslee MA, et al. The bicuspid aortic valve. Curr Probl Cardiol. 2005;30:470–522.CrossRefGoogle Scholar
  48. 48.
    Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30:1809–12.CrossRefGoogle Scholar
  49. 49.
    Larson EW, Edwards WD. Risk factors for aortic dissection: a necropsy study of 161 cases. Am J Cardiol. 1984;53:849–55.CrossRefGoogle Scholar
  50. 50.
    Michelena HI, Khanna AD, Mahoney D, et al. Incidence of aortic complications in patients with bicuspid aortic valves. JAMA. 2011;306:1104–13.CrossRefGoogle Scholar
  51. 51.
    Svensson LG, Kim KH, Blackstone EH, et al. Bicuspid aortic valve surgery with proactive ascending aorta repair. J Thorac Cardiovasc Surg. 2011;142:622–9.CrossRefGoogle Scholar
  52. 52.
    Svensson LG, Adams DH, Bonow RO, et al. Aortic valve and ascending aorta guidelines for management and quality measures: Executive summary. Ann Thorac Surg. 2013;95:1491–505.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Cardio-Thoracic SurgeryBethesda North Hospital, TriHealth Heart InstituteCincinnatiUSA

Personalised recommendations