Morphology of the Ascending Aorta in Bicuspid Aortic Valve Disease

  • Matina PrapaEmail author
  • M. A. Gatzoulis


The spectrum of bicuspid aortic valve (BAV) disease encompasses not only maldevelopment of the aortic valve but also abnormalities of the thoracic aorta, including aortic root and ascending aortic dilatation. Insidious formation of thoracic aortic aneurysm (TAA) can lead to aortic dissection or rupture with necropsy series suggesting a 5–10 times higher risk of aortic dissection in BAV compared to patients with a trileaflet aortic valve.


Bicuspid aortic valve Elastin Glycoprotein Fibrillin Aortopathy Aneurysm Dissection 


  1. 1.
    Tadros TM, Klein MD, Shapira OM. Ascending aortic dilatation associated with bicuspid aortic valve: pathophysiology, molecular biology, and clinical implications. Circulation. 2009;119(6):880–90.Google Scholar
  2. 2.
    Larson EW, Edwards WD. Risk factors for aortic dissection: a necropsy study of 161 cases. Am J Cardiol. 1984;53(6):849–55.Google Scholar
  3. 3.
    Ward C. Clinical significance of the bicuspid aortic valve. Heart. 2000;83(1):81–5.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J. Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation. 2002;106(8):900–4.Google Scholar
  5. 5.
    Hardikar AA, Marwick TH. Surgical thresholds for bicuspid aortic valve associated aortopathy. JACC Cardiovasc Imaging. 2013;6(12):1311–20.PubMedPubMedCentralGoogle Scholar
  6. 6.
    El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6(12):771–86.Google Scholar
  7. 7.
    Guo DC, Papke CL, He R, Milewicz DM. Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci. 2006;1085:339–52.PubMedGoogle Scholar
  8. 8.
    Wolinsky H, Glagov S. A lamellar unit of aortic medial structure and function in mammals. Circ Res. 1967;20(1):99–111.Google Scholar
  9. 9.
    Dingemans KP, Teeling P, Lagendijk JH, Becker AE. Extracellular matrix of the human aortic media: an ultrastructural histochemical and immunohistochemical study of the adult aortic media. Anat Rec. 2000;258(1):1–14.Google Scholar
  10. 10.
    Niwa K, Perloff JK, Bhuta SM, et al. Structural abnormalities of great arterial walls in congenital heart disease: light and electron microscopic analyses. Circulation. 2001;103(3):393–400.Google Scholar
  11. 11.
    Hasham SN, Guo DC, Milewicz DM. Genetic basis of thoracic aortic aneurysms and dissections. Curr Opin Cardiol. 2002;17(6):677–83.PubMedGoogle Scholar
  12. 12.
    Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121(13):e266–369.Google Scholar
  13. 13.
    Dietz HC, Cutting GR, Pyeritz RE, et al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature. 1991;352(6333):337–9.Google Scholar
  14. 14.
    Fedak PW, de Sa MP, Verma S, et al. Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg. 2003;126(3):797–806.Google Scholar
  15. 15.
    Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33(3):407–11.Google Scholar
  16. 16.
    Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006;312(5770):117–21.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Ng CM, Cheng A, Myers LA, et al. TGF-beta-dependent pathogenesis of mitral valve prolapse in a mouse model of Marfan syndrome. J Clin Invest. 2004;114(11):1586–92.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Gomez D. Al Haj Zen A, Borges LF, et al. Syndromic and non-syndromic aneurysms of the human ascending aorta share activation of the Smad2 pathway. J Pathol. 2009;218(1):131–42.Google Scholar
  19. 19.
    Canadas V, Vilacosta I, Bruna I, Fuster V. Marfan syndrome. Part 1: pathophysiology and diagnosis. Nat Rev Cardiol. 2010;7(5):256–65.PubMedGoogle Scholar
  20. 20.
    LeMaire SA, Wang X, Wilks JA, et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res. 2005;123(1):40–8.Google Scholar
  21. 21.
    Ikonomidis JS, Jones JA, Barbour JR, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg. 2007;133(4):1028–36.Google Scholar
  22. 22.
    Wilton E, Bland M, Thompson M, Jahangiri M. Matrix metalloproteinase expression in the ascending aorta and aortic valve. Interact Cardiovasc Thorac Surg. 2008;7(1):37–40.PubMedGoogle Scholar
  23. 23.
    Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT. Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg. 2008;47(1):166–72. discussion 172PubMedPubMedCentralGoogle Scholar
  24. 24.
    Girdauskas E, Borger MA, Secknus MA, Girdauskas G, Kuntze T. Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Euro J Cardiothorac Surg. 2011;39(6):809–14.Google Scholar
  25. 25.
    Cotrufo M, Della CA. The association of bicuspid aortic valve disease with asymmetric dilatation of the tubular ascending aorta: identification of a definite syndrome. J Cardiovasc Med (Hagerstown). 2009;10(4):291–7.Google Scholar
  26. 26.
    Della Corte A, Quarto C, Bancone C, et al. Spatiotemporal patterns of smooth muscle cell changes in ascending aortic dilatation with bicuspid and tricuspid aortic valve stenosis: focus on cell-matrix signaling. J Thorac Cardiovasc Surg. 2008;135(1):8–18, 18 e11–12.Google Scholar
  27. 27.
    Andrus BW, O’Rourke DJ, Dacey LJ, Palac RT. Stability of ascending aortic dilatation following aortic valve replacement. Circulation. 2003;108(Suppl 1):II295–9.Google Scholar
  28. 28.
    Hope MD, Hope TA, Crook SE, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4(7):781–7.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Hope MD, Hope TA, Meadows AK, et al. Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology. 2010;255(1):53–61.Google Scholar
  30. 30.
    Topper JN, Cai J, Falb D, Gimbrone MA Jr. Identification of vascular endothelial genes differentially responsive to fluid mechanical stimuli: cyclooxygenase-2, manganese superoxide dismutase, and endothelial cell nitric oxide synthase are selectively up-regulated by steady laminar shear stress. Proc Natl Acad Sci U S A. 1996;93(19):10417–22.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Lehoux S, Tronc F, Tedgui A. Mechanisms of blood flow-induced vascular enlargement. Biorheology. 2002;39(3-4):319–24.PubMedGoogle Scholar
  32. 32.
    Schaefer BM, Lewin MB, Stout KK, et al. The bicuspid aortic valve: an integrated phenotypic classification of leaflet morphology and aortic root shape. Heart. 2008;94(12):1634–8.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Fazel SS, Mallidi HR, Lee RS, et al. The aortopathy of bicuspid aortic valve disease has distinctive patterns and usually involves the transverse aortic arch. J Thorac Cardiovasc Surg. 2008;135(4):901–7, 907 e901-902.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Gatehouse PD, Keegan J, Crowe LA, et al. Applications of phase-contrast flow and velocity imaging in cardiovascular MRI. Eur Radiol. 2005;15(10):2172–84.PubMedGoogle Scholar
  35. 35.
    Barker AJ, Lanning C, Shandas R. Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng. 2010;38(3):788–800.Google Scholar
  36. 36.
    Golestani R, Razavian M, Nie L, et al. Imaging vessel wall biology to predict outcome in abdominal aortic aneurysm. Circ Cardiovasc Imaging. 2015;8(1)Google Scholar
  37. 37.
    Prapa M, Ho SY. Risk stratification in bicuspid aortic valve disease: still more work to do. EuroJ Cardiothorac Surg. 2012;41(2):327–8.Google Scholar
  38. 38.
    Buxton DB. Molecular imaging of aortic aneurysms. Circ Cardiovasc Imaging. 2012;5(3):392–9.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Huntington K, Hunter AG, Chan KL. A prospective study to assess the frequency of familial clustering of congenital bicuspid aortic valve. J Am Coll Cardiol. 1997;30(7):1809–12.Google Scholar
  40. 40.
    Loscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A. 2007;143A(17):1960–7.PubMedGoogle Scholar
  41. 41.
    Elsheikh M, Casadei B, Conway GS, Wass JA. Hypertension is a major risk factor for aortic root dilatation in women with Turner’s syndrome. Clin Endocrinol (Oxf). 2001;54(1):69–73.PubMedGoogle Scholar
  42. 42.
    Loffredo CA, Chokkalingam A, Sill AM, et al. Prevalence of congenital cardiovascular malformations among relatives of infants with hypoplastic left heart, coarctation of the aorta, and d-transposition of the great arteries. Am J Med Genet A. 2004;124A(3):225–30.PubMedGoogle Scholar
  43. 43.
    Robinson PN, Godfrey M. The molecular genetics of Marfan syndrome and related microfibrillopathies. J Med Genet. 2000;37(1):9–25.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Arrington CB, Sower CT, Chuckwuk N, et al. Absence of TGFBR1 and TGFBR2 mutations in patients with bicuspid aortic valve and aortic dilation. Am J Cardiol. 2008;102(5):629–31.PubMedGoogle Scholar
  45. 45.
    Niessen K, Karsan A. Notch signaling in cardiac development. Circ Res. 2008;102(10):1169–81.PubMedGoogle Scholar
  46. 46.
    High FA, Epstein JA. The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet. 2008;9(1):49–61.PubMedGoogle Scholar
  47. 47.
    Garg V, Muth AN, Ransom JF, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.Google Scholar
  48. 48.
    McKellar SH, Tester DJ, Yagubyan M, Majumdar R, Ackerman MJ, Sundt TM 3rd. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007;134(2):290–6.PubMedGoogle Scholar
  49. 49.
    Kent KC, Crenshaw ML, Goh DL, Dietz HC. Genotype-phenotype correlation in patients with bicuspid aortic valve and aneurysm. J Thorac Cardiovasc Surg. 2013;146(1):158–65. e151PubMedGoogle Scholar
  50. 50.
    Gomez D, Coyet A, Ollivier V, et al. Epigenetic control of vascular smooth muscle cells in Marfan and non-Marfan thoracic aortic aneurysms. Cardiovasc Res. 2011;89(2):446–56.PubMedGoogle Scholar
  51. 51.
    Shah A, Feng S, Krupp D, et al. Abstract 9035: Epigenetic modifications are associated with ascending thoracic aneurysm formation in patients with bicuspid aortic valve. Circulation. 2012;126:A9035.Google Scholar
  52. 52.
    Gomez D, Kessler K, Borges LF, et al. Smad2-dependent protease nexin-1 overexpression differentiates chronic aneurysms from acute dissections of human ascending aorta. Arterioscler Thromb Vasc Biol. 2013;33(9):2222–32.Google Scholar
  53. 53.
    Schadt EE. Molecular networks as sensors and drivers of common human diseases. Nature. 2009;461(7261):218–23.PubMedGoogle Scholar
  54. 54.
    Neri E, Barabesi L, Buklas D, et al. Limited role of aortic size in the genesis of acute type A aortic dissection. Eur J Cardiothorac Surg. 2005;28(6):857–63.PubMedGoogle Scholar
  55. 55.
    Davies RR, Kaple RK, Mandapati D, et al. Natural history of ascending aortic aneurysms in the setting of an unreplaced bicuspid aortic valve. Ann Thorac Surg. 2007;83(4):1338–44.Google Scholar
  56. 56.
    Nataatmadja M, West J, Prabowo S, West M. Angiotensin II receptor antagonism reduces transforming growth factor beta and Smad signaling in thoracic aortic aneurysm. Ochsner J. 2013;13(1):42–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Clinical GeneticsAddenbrooke’s HospitalCambridgeUK
  2. 2.Adult Congenital Heart Centre and Centre for Pulmonary HypertensionRoyal Brompton Hospital, and The National Heart and Lung Institute, Imperial CollegeLondonUK

Personalised recommendations