Imaging of the Thoracic Aorta

  • Helen Dormand
  • Raad H. MohiaddinEmail author


The aorta is a biological lifeline designed to deal with multiple dynamic forces and haemodynamic stresses in our daily activities. Yet it’s elastic versatility and structure make it susceptible to damage in many pathological states, be they congenital, inherited or acquired. Imaging is crucial in the management of patients with aortic diseases and have become the cornerstone of diagnostic, management and prognostic protocols and key in many clinical guidelines. A number of non-invasive imaging methods are available for assessing the aorta with tailoring imaging regimen to the patient and pathology over the period of a lifetime. In this chapter we aim to discuss advantages and limitations of various imaging techniques and to review their clinical applications in various aortic congenital and acquired diseases.


Anatomy Function PET-CT, MRI, TOE Endoleaks Acute aortic syndromes 


  1. 1.
    Hagan PG, Nienaber CA, Isselbacher EM, et al. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA. 2000;283:897–903.CrossRefGoogle Scholar
  2. 2.
    Authors/Task Force Members, Erbel R, Aboyans V, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873–926.Google Scholar
  3. 3.
    Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. J Am Coll Cardiol. 2010;55:e27–129.CrossRefGoogle Scholar
  4. 4.
    Holmes DR, Rich JB, Zoghbi WA, Mack MJ. The heart team of cardiovascular care. J Am Coll Cardiol. 2013;61:903–7.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Head SJ, Kaul S, Mack MJ, et al. The rationale for heart team decision-making for patients with stable complex coronary artery disease. Eur Heart J. 2013;34:2510–8.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Anderson RH. The surgical anatomy of the aortic root. Multimed Man Cardio-Thorac Surg. 2007;2007(102):mmcts.2006.002527.CrossRefGoogle Scholar
  7. 7.
    Underwood MJ, Khoury EG, Deronck D, Glineur D, Dion R. The aortic root: structure, function, and surgical reconstruction. Heart. 2000;83:376–80.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Pansky B, Gest TR. Lippincott’s concise illustrated anatomy. Philadelphia: Lippincott Williams & Wilkins; 2012.Google Scholar
  9. 9.
    Safar ME, Boudier HS. Vascular development, pulse pressure, and the mechanisms of hypertension. Hypertension. 2005;46:205–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Bannas P, Jung C, Blanke P, et al. Severe aortic arch calcification depicted on chest radiography strongly suggests coronary artery calcification. Eur Radiol. 2013;23:2652–7.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    von Kodolitsch Y, Nienaber CA, Dieckmann C, et al. Chest radiography for the diagnosis of acute aortic syndrome. Am J Med. 2004;116:73–7.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Ekeh AP, Peterson W, Woods RJ, et al. Is chest X-ray an adequate screening tool for the diagnosis of blunt thoracic aortic injury? J Trauma. 2008;65:1088–92.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Evangelista A, Flachskampf F, Lancellotti P, et al. European Association of Echocardiography recommendations for standardization of performance, digital storage and reporting of echocardiographic studies. Eur Heart J Cardiovasc Imaging. 2008;9:438–48.Google Scholar
  14. 14.
    Roman MJ, Devereux RB, Kramer-Fox R, O’Loughlin J. Two-dimensional echocardiographic aortic root dimensions in normal children and adults. Am J Cardiol. 1989;64:507–12.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Lang RM, Bierig M, Devereux RB, et al. Recommendations for chamber quantification. Eur J Echocardiogr. 2006;7:79–108.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Kabirdas D, Scridon C, Brenes J-C, Hernandez AV, Novaro GM, Asher CR. Accuracy of transthoracic echocardiography for the measurement of the ascending aorta: comparison with transesophageal echocardiography. Clin Cardiol. 2010;33:502–7.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Evangelista A, Flachskampf FA, Erbel R, et al. Echocardiography in aortic diseases: EAE recommendations for clinical practice. Eur J Echocardiogr. 2010;11:645–58.CrossRefGoogle Scholar
  18. 18.
    Flachskampf FA, Badano L, Daniel WG, et al. Recommendations for transoesophageal echocardiography: update 2010. Eur Heart J Cardiovasc Imaging. 2010;11:557–76.Google Scholar
  19. 19.
    Orihashi K, Matsuura Y, Sueda T, et al. Aortic arch branches are no longer a blind zone for transesophageal echocardiography: a new eye for aortic surgeons. J Thorac Cardiovasc Surg. 2000;120:466–72.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Shiga T, Wajima Z, Apfel CC, Inoue T, Ohe Y. Diagnostic accuracy of transesophageal echocardiography, helical computed tomography, and magnetic resonance imaging for suspected thoracic aortic dissection: systematic review and meta-analysis. Arch Intern Med. 2006;166:1350–6.CrossRefGoogle Scholar
  21. 21.
    Ha HI, Seo JB, Lee SH, et al. Imaging of Marfan syndrome: multisystemic manifestations. Radiographics. 2007;27:989–1004.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Farrelly C, Davarpanah A, Keeling AN, et al. Low dose dual-source CT angiography of the thoracic aorta. Int J Cardiovasc Imaging. 2011;27:1025–34.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Amano Y, Takahama K, Kumita S. Non-contrast-enhanced MR angiography of the thoracic aorta using cardiac and navigator-gated magnetization-prepared three-dimensional steady-state free precession. J Magn Reson Imaging. 2008;27:504–9.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Amano Y, Takahama K, Kumita S. Noncontrast-enhanced three-dimensional magnetic resonance aortography of the thorax at 3.0 T using respiratory-compensated T1-weighted k-space segmented gradient-echo imaging with radial data sampling: preliminary study. Invest Radiol. 2009;44:548–52.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Potthast S, Mitsumori L, Stanescu LA, et al. Measuring aortic diameter with different MR techniques: comparison of three-dimensional (3D) navigated steady-state free-precession (SSFP), 3D contrast-enhanced magnetic resonance angiography (CE-MRA), 2D T2 black blood, and 2D cine SSFP. J Magn Reson Imaging. 2010;31:177–84.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Burman ED, Keegan J, Kilner PJ. Aortic root measurement by cardiovascular magnetic resonance: specification of planes and lines of measurement and corresponding normal values. Circ Cardiovasc Imaging. 2008;1:104–13.CrossRefGoogle Scholar
  27. 27.
    Nienaber CA. The role of imaging in acute aortic syndromes. Eur Heart J Cardiovasc Imaging. 2013;14:15–23.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Vriz O, Driussi C, Bettio M, Ferrara F, D’Andrea A, Bossone E. Aortic root dimensions and stiffness in healthy subjects. Am J Cardiol. 2013;112:1224–9.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Mirea O, Maffessanti F, Gripari P, et al. Effects of aging and body size on proximal and ascending aorta and aortic arch: inner edge-to-inner edge reference values in a large adult population by two-dimensional transthoracic echocardiography. J Am Soc Echocardiogr. 2013;26:419–27.CrossRefGoogle Scholar
  30. 30.
    O’Rourke MF, Hashimoto J. Mechanical factors in arterial aging: a clinical perspective. J Am Coll Cardiol. 2007;50:1–13.CrossRefGoogle Scholar
  31. 31.
    Craiem D, Chironi G, Redheuil A, et al. Aging impact on thoracic aorta 3D morphometry in intermediate-risk subjects: looking beyond coronary arteries with non-contrast cardiac CT. Ann Biomed Eng. 2012;40:1028–38.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Redheuil A, Yu W-C, Mousseaux E, et al. Age-related changes in aortic arch geometry: relationship with proximal aortic function and left ventricular mass and remodeling. J Am Coll Cardiol. 2011;58:1262–70.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Mao SS, Ahmadi N, Shah B, et al. Normal thoracic aorta diameter on cardiac computed tomography in healthy asymptomatic adults. Acad Radiol. 2008;15:827–34.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Davis FM, Rateri DL, Daugherty A. Mechanisms of aortic aneurysm formation: translating preclinical studies into clinical therapies. Heart. 2014;100:1498–505.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Schwammenthal E, Schwammenthal Y, Tanne D, et al. Transcutaneous detection of aortic arch atheromas by suprasternal harmonic imaging. J Am Coll Cardiol. 2002;39:1127–32.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kronzon I, Tunick PA. Aortic atherosclerotic disease and stroke. Circulation. 2006;114:63–75.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Montgomery DH, Ververis JJ, McGorisk G, Frohwein S, Martin RP, Taylor WR. Natural history of severe atheromatous disease of the thoracic aorta: a transesophageal echocardiographic study. J Am Coll Cardiol. 1996;27:95–101.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ihara T, Komori K, Yamamoto K, Kobayashi M, Banno H, Kodama A. Three-dimensional workstation is useful for measuring the correct size of abdominal aortic aneurysm diameters. Ann Vasc Surg. 2013;27:154–61.PubMedCrossRefGoogle Scholar
  39. 39.
    Gottsegen JM, Coplan NL. The atherosclerotic aortic arch: considerations in diagnostic imaging. Prev Cardiol. 2008;11:162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Yang L, Rudd J, Myers K, et al. One year follow up in aortic and carotid FDG-PET/CT imaging of atherosclerotic plaque inflammation. Society of Nuclear Medicine Annual Meeting Abstracts 2008;49:S202P.Google Scholar
  41. 41.
    Derlin T, Richter U, Bannas P, et al. Feasibility of 18F-sodium fluoride PET/CT for imaging of atherosclerotic plaque. J Nucl Med. 2010;51:862–5.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Mita T, Arita T, Matsunaga N, et al. Complications of endovascular repair for thoracic and abdominal aortic aneurysm: an imaging spectrum. Radiographics. 2000;20:1263–78.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Stavropoulos SW, Charagundla SR. Imaging techniques for detection and management of endoleaks after endovascular aortic aneurysm repair. Radiology. 2007;243:641–55.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Lovy AJ, Rosenblum JK, Levsky JM, et al. Acute aortic syndromes: a second look at dual-phase CT. AJR Am J Roentgenol. 2013;200:805–11.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Harris KM, Braverman AC, Eagle KA, et al. Acute aortic intramural hematoma: an analysis from the international registry of acute aortic dissection. Circulation. 2012;126:S91–6.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    von Kodolitsch Y, Csösz SK, Koschyk DH, et al. Intramural hematoma of the aorta: predictors of progression to dissection and rupture. Circulation. 2003;107:1158–63.CrossRefGoogle Scholar
  47. 47.
    Nienaber CA, Richartz BM, Rehders T, Ince H, Petzsch M. Aortic intramural haematoma: natural history and predictive factors for complications. Heart. 2004;90:372–4.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kuehl H, Eggebrecht H, Boes T, et al. Detection of inflammation in patients with acute aortic syndrome: comparison of FDG-PET/CT imaging and serological markers of inflammation. Heart. 2008;94:1472–7.CrossRefGoogle Scholar
  49. 49.
    LePage MA, Quint LE, Sonnad SS, Deeb GM, Williams DM. Aortic dissection. Am J Roentgenol. 2001;177:207–11.CrossRefGoogle Scholar
  50. 50.
    Williams DM, Joshi A, Dake MD, Deeb GM, Miller DC, Abrams GD. Aortic cobwebs: an anatomic marker identifying the false lumen in aortic dissection—imaging and pathologic correlation. Radiology. 1994;190:167–74.CrossRefGoogle Scholar
  51. 51.
    Mosquera VX, Marini M, Muñiz J, et al. Blunt traumatic aortic injuries of the ascending aorta and aortic arch: a clinical multicentre study. Injury. 2013;44:1191–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Gaudino M, Anselmi A, Morelli M, et al. Aortic expansion rate in patients with dilated post-stenotic ascending aorta submitted only to aortic valve replacement: long-term follow-up. J Am Coll Cardiol. 2011;58:581–4.CrossRefGoogle Scholar
  53. 53.
    Both M, Ahmadi-Simab K, Reuter M, et al. MRI and FDG-PET in the assessment of inflammatory aortic arch syndrome in complicated courses of giant cell arteritis. Ann Rheum Dis. 2008;67:1030–3.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Kobayashi Y, Ishii K, Oda K, et al. Aortic wall inflammation due to Takayasu arteritis imaged with 18F-FDG PET coregistered with enhanced CT. J Nucl Med. 2005;46:917–22.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Chau EMC, Wang E, Chiu CSW, Chow W-H. Non-infectious aortitis: an important cause of severe aortic regurgitation. Asian Cardiovasc Thorac Ann. 2006;14:177–82.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Rider OJ, Asaad M, Ntusi N, et al. HIV is an independent predictor of aortic stiffness. J Cardiovasc Magn Reson. 2014;16:57.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Baumgartner H, Bonhoeffer P, De Groot NMS, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.CrossRefGoogle Scholar
  58. 58.
    Mohiaddin RH, Kilner PJ, Rees S, Longmore DB. Magnetic resonance volume flow and jet velocity mapping in aortic coarctation. J Am Coll Cardiol. 1993;22:1515–21.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Steffens JC, Bourne MW, Sakuma H, O’Sullivan M, Higgins CB. Quantification of collateral blood flow in coarctation of the aorta by velocity encoded cine magnetic resonance imaging. Circulation. 1994;90:937–43.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Ciotti GR, Vlahos AP, Silverman NH. Morphology and function of the bicuspid aortic valve with and without coarctation of the aorta in the young. Am J Cardiol. 2006;98:1096–102.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Detaint D, Michelena HI, Nkomo VT, Vahanian A, Jondeau G, Sarano ME. Aortic dilatation patterns and rates in adults with bicuspid aortic valves: a comparative study with Marfan syndrome and degenerative aortopathy. Heart. 2014;100:126–34.CrossRefGoogle Scholar
  62. 62.
    Markl M, Kilner PJ, Ebbers T. Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2011;13:7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Hope MD, Hope TA, Crook SES, et al. 4D flow CMR in assessment of valve-related ascending aortic disease. JACC Cardiovasc Imaging. 2011;4:781–7.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    van Ooij P, Potters WV, Nederveen AJ, et al. Thoracic aortic wall shear stress atlases in patients with bicuspid aortic valves. J Cardiovasc Magn Reson. 2014;16:P161.PubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schnell S, Barker AJ, Entezari P, et al. Hemodynamics in bicuspid aortic valve relatives with trileaflet aortic valves compared to normal controls using 4D flow MRI. J Cardiovasc Magn Reson. 2014;16:P114.PubMedCentralCrossRefGoogle Scholar
  66. 66.
    Allen BD, van Ooij P, Barker AJ, et al. Impact of beta-blocker therapy on thoracic aorta 3D wall shear stress in patients with bicuspid aortic valve. J Cardiovasc Magn Reson. 2014;16:O47.PubMedCentralCrossRefGoogle Scholar
  67. 67.
    Loscalzo ML, Goh DLM, Loeys B, Kent KC, Spevak PJ, Dietz HC. Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet A. 2007;143:1960–7.CrossRefGoogle Scholar
  68. 68.
    Hernanz-Schulman M. Vascular rings: a practical approach to imaging diagnosis. Pediatr Radiol. 2005;35:961–79.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    van Son JA, Julsrud PR, Hagler DJ, et al. Imaging strategies for vascular rings. Ann Thorac Surg. 1994;57:604–10.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Layton KF, Kallmes DF, Cloft HJ, Lindell EP, Cox VS. Bovine aortic arch variant in humans: clarification of a common misnomer. AJNR Am J Neuroradiol. 2006;27:1541–2.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Karacan A, Türkvatan A, Karacan K. Anatomical variations of aortic arch branching: evaluation with computed tomographic angiography. Cardiol Young. 2014;24:485–93.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kouchoukos NT, Masetti P. Aberrant subclavian artery and Kommerell aneurysm: surgical treatment with a standard approach. J Thorac Cardiovasc Surg. 2007;133:888–92.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Davies M, Guest PJ. Developmental abnormalities of the great vessels of the thorax and their embryological basis. Br J Radiol. 2003;76:491–502.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Loeys BL, Dietz HC, Braverman AC, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47:476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Dormand H, Mohiaddin RH. Cardiovascular magnetic resonance in Marfan syndrome. J Cardiovasc Magn Reson. 2013;15:33.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kiotsekoglou A, Sutherland GR, Moggridge JC, Nassiri DK, Camm AJ, Child AH. The unravelling of primary myocardial impairment in Marfan syndrome by modern echocardiography. Heart. 2009;95:1561–6.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Fleischmann D, Liang DH, Mitchell RS, Miller DC. Pre- and postoperative imaging of the aortic root for valve-sparing aortic root repair (V-SARR). Semin Thorac Cardiovasc Surg. 2008;20:365–73.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    De Witte P, Radonic T, Laan K, Zwinderman AH. Aortic distensibility is a predictor for aortic events in patients with Marfan syndrome: a 12 year-survival analysis. J Am Coll Cardiol. 2010;55(supl 10).Google Scholar
  79. 79.
    Nollen GJ, Groenink M, Tijssen JGP, van der Wall EE, Mulder BJM. Aortic stiffness and diameter predict progressive aortic dilatation in patients with Marfan syndrome. Eur Heart J. 2004;25:1146–52.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Dhouib A, Beghetti M, Didier D. Imaging findings in a child with Loeys-Dietz syndrome. Circulation. 2012;126:507–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Johnson PT, Chen JK, Loeys BL, Dietz HC, Fishman EK. Loeys-Dietz syndrome: MDCT angiography findings. AJR Am J Roentgenol. 2007;189:W29–35.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Zilocchi M, Macedo TA, Oderich GS, Vrtiska TJ, Biondetti PR, Stanson AW. Vascular Ehlers-Danlos syndrome: imaging findings. AJR Am J Roentgenol. 2007;189:712–9.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Germain DP. Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis. 2007;2:32.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Germain DP. The vascular Ehlers-Danlos syndrome. Curr Treat Options Cardiovasc Med. 2006;8:121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Matura LA, Ho VB, Rosing DR, Bondy CA. Aortic dilatation and dissection in Turner syndrome. Circulation. 2007;116:1663–70.CrossRefGoogle Scholar
  86. 86.
    Turtle EJ, Sule AA, Bath LE, et al. Assessing and addressing cardiovascular risk in adults with Turner syndrome. Clin Endocrinol. 2013;78:639–45.CrossRefGoogle Scholar
  87. 87.
    Ritelli M, Chiarelli N, Dordoni C, et al. Arterial Tortuosity Syndrome: homozygosity for two novel and one recurrent SLC2A10 missense mutations in three families with severe cardiopulmonary complications in infancy and a literature review. BMC Med Genet. 2014;15:122.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    van de Laar IMBH, van der Linde D, Oei EHG, et al. Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome. J Med Genet. 2012;49:47–57.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Laurent S, Cockcroft J, Van Bortel L, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J. 2006;27:2588–605.CrossRefGoogle Scholar
  90. 90.
    Laurent S, Katsahian S, Fassot C, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 2003;34:1203–6.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106:2085–90.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Sutton-Tyrrell K, Najjar SS, Boudreau RM, et al. Elevated aortic pulse wave velocity, a marker of arterial stiffness, predicts cardiovascular events in well-functioning older adults. Circulation. 2005;111:3384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Mohiaddin RH, Underwood SR, Bogren HG, et al. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Heart. 1989;62:90–6.CrossRefGoogle Scholar
  94. 94.
    Rueckert D, Burger P, Forbat SM, Mohiaddin RD, Yang GZ. Automatic tracking of the aorta in cardiovascular MR images using deformable models. IEEE Trans Med Imaging. 1997;16:581–90.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mohiaddin RH, Firmin DN, Longmore DB. Age-related changes of human aortic flow wave velocity measured noninvasively by magnetic resonance imaging. J Appl Physiol. 1993;74:492–7.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Dogui A, Redheuil A, Lefort M, et al. Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J Magn Reson Imaging. 2011;33:1321–9.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Westenberg JJM, de Roos A, Grotenhuis HB, et al. Improved aortic pulse wave velocity assessment from multislice two-directional in-plane velocity-encoded magnetic resonance imaging. J Magn Reson Imaging. 2010;32:1086–94.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kröner ESJ, Scholte AJHA, de Koning PJH, et al. MRI-assessed regional pulse wave velocity for predicting absence of regional aorta luminal growth in Marfan syndrome. Int J Cardiol. 2013;167:2977–82.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Kröner ESJ, van der Geest RJ, Scholte AJHA, et al. Evaluation of sampling density on the accuracy of aortic pulse wave velocity from velocity-encoded MRI in patients with Marfan syndrome. J Magn Reson Imaging. 2012;36:1470–6.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Westenberg JJM, van Poelgeest EP, Steendijk P, Grotenhuis HB, Jukema JW, de Roos A. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment. J Cardiovasc Magn Reson. 2012;14:2.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PW, Malaisrie SC, McCarthy P, Collins J, Carr J, Markl M. Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation. 2014;129(6):673–82.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Borders General HospitalMelroseScotland
  2. 2.Cardiovascular Magnetic Resonance Unit, Royal Brompton HospitalLondonUK
  3. 3.National Heart and Lung Institute, Imperial CollegeLondonUK

Personalised recommendations