Advertisement

Triggers of Aortic Dissection

  • Bulat A. Ziganshin
  • John A. ElefteriadesEmail author
Chapter

Abstract

Aortic dissection is the most common and highly lethal aortic emergency. Multiple studies have described the epidemiology, natural history, and management strategies of aortic dissection; however, few studies have addressed the question—What triggers the aorta to dissect? It is generally considered that aortic dissection is a random event that can occur at any day and point in time. However, there is evidence to suggest that aortic dissection is indeed not random; rather, we now believe that aortic dissection is programmed genetically and occurs at a specific moment as a result of a very specific sequence of events. In this chapter we review our current understanding of the predisposing and inciting events that trigger aortic dissection.

Keywords

Dissection Genetics Cytokines Stress Distensibility 

References

  1. 1.
    Olsson C, Thelin S, Stahle E, Ekbom A, Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114:2611–8.CrossRefGoogle Scholar
  2. 2.
    Bickerstaff LK, Pairolero PC, Hollier LH, et al. Thoracic aortic aneurysms: a population-based study. Surgery. 1982;92:1103–8.Google Scholar
  3. 3.
    Meszaros I, Morocz J, Szlavi J, et al. Epidemiology and clinicopathology of aortic dissection. Chest. 2000;117:1271–8.CrossRefGoogle Scholar
  4. 4.
    Clouse WD, Hallett JW Jr, Schaff HV, et al. Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin Proc. 2004;79:176–80.CrossRefGoogle Scholar
  5. 5.
    Howard DP, Banerjee A, Fairhead JF, et al. Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation. 2013;127:2031–7.CrossRefGoogle Scholar
  6. 6.
    Pacini D, Di Marco L, Fortuna D, et al. Acute aortic dissection: epidemiology and outcomes. Int J Cardiol. 2013;167:2806–12.CrossRefGoogle Scholar
  7. 7.
    Elefteriades JA. Thoracic aortic aneurysm: reading the enemy’s playbook. Curr Probl Cardiol. 2008;33:203–77.CrossRefGoogle Scholar
  8. 8.
    Elefteriades JA, Farkas EA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J Am Coll Cardiol. 2010;55:841–57.CrossRefGoogle Scholar
  9. 9.
    Goldfinger JZ, Halperin JL, Marin ML, Stewart AS, Eagle KA, Fuster V. Thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2014;64:1725–39.CrossRefGoogle Scholar
  10. 10.
    Hatzaras IS, Bible JE, Koullias GJ, Tranquilli M, Singh M, Elefteriades JA. Role of exertion or emotion as inciting events for acute aortic dissection. Am J Cardiol. 2007;100:1470–2.CrossRefGoogle Scholar
  11. 11.
    Morales DL, Quin JA, Braxton JH, Hammond GL, Gusberg RJ, Elefteriades JA. Experimental confirmation of effectiveness of fenestration in acute aortic dissection. Ann Thorac Surg. 1998;66:1679–83.CrossRefGoogle Scholar
  12. 12.
    Coady MA, Davies RR, Roberts M, et al. Familial patterns of thoracic aortic aneurysms. Arch Surg. 1999;134:361–7.CrossRefGoogle Scholar
  13. 13.
    Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;25:506–11.CrossRefGoogle Scholar
  14. 14.
    Albornoz G, Coady MA, Roberts M, et al. Familial thoracic aortic aneurysms and dissections--incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82:1400–5.CrossRefGoogle Scholar
  15. 15.
    Milewicz DM, Guo DC, Tran-Fadulu V, et al. Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu Rev Genomics Hum Genet. 2008;9:283–302.CrossRefGoogle Scholar
  16. 16.
    Elefteriades JA, Pomianowski P. Practical genetics of thoracic aortic aneurysm. Prog Cardiovasc Dis. 2013;56:57–67.CrossRefGoogle Scholar
  17. 17.
    De Backer J, Campens L, De Paepe A. Genes in thoracic aortic aneurysms/dissections – do they matter? Ann Cardiothorac Surg. 2013;2:73–82.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Pomianowski P, Elefteriades JA. The genetics and genomics of thoracic aortic disease. Ann Cardiothorac Surg. 2013;2:271–9.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Milewicz DM, Regalado ES, Shendure J, Nickerson DA, Guo DC. Successes and challenges of using whole exome sequencing to identify novel genes underlying an inherited predisposition for thoracic aortic aneurysms and acute aortic dissections. Trends Cardiovasc Med. 2014;24:53–60.CrossRefGoogle Scholar
  20. 20.
    Jiang X, Rowitch DH, Soriano P, McMahon AP, Sucov HM. Fate of the mammalian cardiac neural crest. Development. 2000;127:1607–16.PubMedGoogle Scholar
  21. 21.
    Cheung C, Bernardo AS, Trotter MW, Pedersen RA, Sinha S. Generation of human vascular smooth muscle subtypes provides insight into embryological origin-dependent disease susceptibility. Nat Biotechnol. 2012;30:165–73.CrossRefGoogle Scholar
  22. 22.
    Gittenberger-de Groot AC, DeRuiter MC, Bergwerff M, Poelmann RE. Smooth muscle cell origin and its relation to heterogeneity in development and disease. Arterioscler Thromb Vasc Biol. 1999;19:1589–94.CrossRefGoogle Scholar
  23. 23.
    El-Hamamsy I, Yacoub MH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat Rev Cardiol. 2009;6:771–86.CrossRefGoogle Scholar
  24. 24.
    Brownstein AJ, Kostiuk V, Ziganshin BA, Zafar MA, Kuivaniemi H, Body SC, Bale AE, Elefteriades JA. Genes associated with thoracic aortic aneurysm and dissection: 2018 update and clinical implications. AORTA (Stamford). 2018;6(1):13–20.  https://doi.org/10.1055/s-0038-1639612.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Guo DC, Papke CL, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am J Hum Genet. 2009;84:617–27.CrossRefGoogle Scholar
  26. 26.
    Guo DC, Pannu H, Tran-Fadulu V, et al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet. 2007;39:1488–93.CrossRefGoogle Scholar
  27. 27.
    Lemaire SA, McDonald ML, Guo DC, et al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat Genet. 2011;43:996–1000.CrossRefGoogle Scholar
  28. 28.
    Iakoubova OA, Tong CH, Rowland CM, et al. Genetic variants in FBN-1 and risk for thoracic aortic aneurysm and dissection. PLoS One. 2014;9:e91437.CrossRefGoogle Scholar
  29. 29.
    Iakoubova OA, Tong CH, Catanese J, Rowland CM, Luke MM, Tranquilli M, Elefteriades JA. KIF6 719Arg Genetic Variant and Risk for Thoracic Aortic Dissection. Aorta (Stamford). 2016;4(3):83–90.  https://doi.org/10.12945/j.aorta.2016.16.003.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Iakoubova OA, Tong CH, Rowland CM, et al. Association of the Trp719Arg polymorphism in kinesin-like protein 6 with myocardial infarction and coronary heart disease in 2 prospective trials: the CARE and WOSCOPS trials. J Am Coll Cardiol. 2008;51:435–43.CrossRefGoogle Scholar
  31. 31.
    Hackmann AE, Thompson RW, LeMaire SA. Long-term suppressive therapy: clinical reality and future prospects. In: Elefteriades JA, editor. Acute aortic disease. New York: Informa Healthcare; 2007. p. 309–30.Google Scholar
  32. 32.
    Barbour JR, Spinale FG, Ikonomidis JS. Proteinase systems and thoracic aortic aneurysm progression. J Surg Res. 2007;139:292–307.CrossRefGoogle Scholar
  33. 33.
    Alexander JJ. The pathobiology of aortic aneurysms. J Surg Res. 2004;117:163–75.CrossRefGoogle Scholar
  34. 34.
    Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996;800:157–74.CrossRefGoogle Scholar
  35. 35.
    McMillan WD, Pearce WH. Increased plasma levels of metalloproteinase-9 are associated with abdominal aortic aneurysms. J Vasc Surg. 1999;29:122–7.CrossRefGoogle Scholar
  36. 36.
    LeMaire SA, Wang X, Wilks JA, et al. Matrix metalloproteinases in ascending aortic aneurysms: bicuspid versus trileaflet aortic valves. J Surg Res. 2005;123:40–8.CrossRefGoogle Scholar
  37. 37.
    Ikonomidis JS, Jones JA, Barbour JR, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation. 2006;114:I365–70.CrossRefGoogle Scholar
  38. 38.
    Ikonomidis JS, Jones JA, Barbour JR, et al. Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with bicuspid or tricuspid aortic valves. J Thorac Cardiovasc Surg. 2007;133:1028–36.CrossRefGoogle Scholar
  39. 39.
    Koullias GJ, Korkolis DP, Ravichandran P, Psyrri A, Hatzaras I, Elefteriades JA. Tissue microarray detection of matrix metalloproteinases, in diseased tricuspid and bicuspid aortic valves with or without pathology of the ascending aorta. Eur J Cardiothorac Surg. 2004;26:1098–103.CrossRefGoogle Scholar
  40. 40.
    Koullias GJ, Ravichandran P, Korkolis DP, Rimm DL, Elefteriades JA. Increased tissue microarray matrix metalloproteinase expression favors proteolysis in thoracic aortic aneurysms and dissections. Ann Thorac Surg. 2004;78:2106–10.CrossRefGoogle Scholar
  41. 41.
    Tang PC, Yakimov AO, Teesdale MA, et al. Transmural inflammation by interferon-gamma-producing T cells correlates with outward vascular remodeling and intimal expansion of ascending thoracic aortic aneurysms. FASEB J. 2005;19:1528–30.CrossRefGoogle Scholar
  42. 42.
    Schonbeck U, Sukhova GK, Gerdes N, Libby P. T(H)2 predominant immune responses prevail in human abdominal aortic aneurysm. Am J Pathol. 2002;161:499–506.CrossRefGoogle Scholar
  43. 43.
    Lopez-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA, Thompson RW. Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 1997;150:993–1007.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Jacob MP, Badier-Commander C, Fontaine V, Benazzoug Y, Feldman L, Michel JB. Extracellular matrix remodeling in the vascular wall. Pathol Biol (Paris). 2001;49:326–32.CrossRefGoogle Scholar
  45. 45.
    Rowe VL, Stevens SL, Reddick TT, et al. Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas. J Vasc Surg. 2000;31:567–76.CrossRefGoogle Scholar
  46. 46.
    Henderson EL, Geng YJ, Sukhova GK, Whittemore AD, Knox J, Libby P. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation. 1999;99:96–104.CrossRefGoogle Scholar
  47. 47.
    Liao S, Curci JA, Kelley BJ, Sicard GA, Thompson RW. Accelerated replicative senescence of medial smooth muscle cells derived from abdominal aortic aneurysms compared to the adjacent inferior mesenteric artery. J Surg Res. 2000;92:85–95.CrossRefGoogle Scholar
  48. 48.
    Coady MA, Rizzo JA, Hammond GL, et al. What is the appropriate size criterion for resection of thoracic aortic aneurysms? J Thorac Cardiovasc Surg. 1997;113:476–91.CrossRefGoogle Scholar
  49. 49.
    Coady MA, Rizzo JA, Goldstein LJ, Elefteriades JA. Natural history, pathogenesis, and etiology of thoracic aortic aneurysms and dissections. Cardiol Clin. 1999;17:615–35.CrossRefGoogle Scholar
  50. 50.
    Elefteriades JA, Ziganshin BA, Rizzo JA, et al. Indications and imaging for aortic surgery: size and other matters. J Thorac Cardiovasc Surg. 2014;149:S10–3.CrossRefGoogle Scholar
  51. 51.
    Davies RR, Goldstein LJ, Coady MA, et al. Yearly rupture or dissection rates for thoracic aortic aneurysms: simple prediction based on size. Ann Thorac Surg. 2002;73:17–27.CrossRefGoogle Scholar
  52. 52.
    Davies RR, Gallo A, Coady MA, et al. Novel measurement of relative aortic size predicts rupture of thoracic aortic aneurysms. Ann Thorac Surg. 2006;81:169–77.CrossRefGoogle Scholar
  53. 53.
    Pape LA, Tsai TT, Isselbacher EM, et al. Aortic diameter >or = 5.5 cm is not a good predictor of type A aortic dissection: observations from the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2007;116:1120–7.CrossRefGoogle Scholar
  54. 54.
    Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol. 2010;55:e27–e129.CrossRefGoogle Scholar
  55. 55.
    Erbel R, Aboyans V, Boileau C, et al. 2014 ESC Guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The task force for the diagnosis and treatment of aortic diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873–926.CrossRefGoogle Scholar
  56. 56.
    Limpert E, Stahel WA, Abbt M. Log-normal distributions across the sciences: keys and clues: on the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability—normal or log-normal: that is the question. Bioscience. 2001;51:341–52.CrossRefGoogle Scholar
  57. 57.
    Turkbey EB, Jain A, Johnson C, et al. Determinants and normal values of ascending aortic diameter by age, gender, and race/ethnicity in the Multi-Ethnic Study of Atherosclerosis (MESA). J Magn Reson Imaging. 2014;39:360–8.CrossRefGoogle Scholar
  58. 58.
    Mehta RH, Manfredini R, Hassan F, et al. Chronobiological patterns of acute aortic dissection. Circulation. 2002;106:1110–5.CrossRefGoogle Scholar
  59. 59.
    Elefteriades JA. Thoracic aortic aneurysm: reading the enemy’s playbook. Yale J Biol Med. 2008;81:175–86.Google Scholar
  60. 60.
    Elefteriades JA, Hatzaras I, Tranquilli MA, et al. Weight lifting and rupture of silent aortic aneurysms. JAMA. 2003;290:2803.CrossRefGoogle Scholar
  61. 61.
    Hatzaras I, Tranquilli M, Coady M, Barrett PM, Bible J, Elefteriades JA. Weight lifting and aortic dissection: more evidence for a connection. Cardiology. 2007;107:103–6.CrossRefGoogle Scholar
  62. 62.
    Koullias G, Modak R, Tranquilli M, Korkolis DP, Barash P, Elefteriades JA. Mechanical deterioration underlies malignant behavior of aneurysmal human ascending aorta. J Thorac Cardiovasc Surg. 2005;130:677–83.CrossRefGoogle Scholar
  63. 63.
    O’Rourke M. Effects of aging on aortic distensibility and on aortic function in man. In: Boudoulas H, Toutouzas PK, Wooley CF, editors. Functional abnormalities of the aorta. Armonk, NY: Futura Publishing Co Inc.; 1996. p. 279–93.Google Scholar
  64. 64.
    Martin C, Sun W, Primiano C, McKay R, Elefteriades J. Age-dependent ascending aorta mechanics assessed through multiphase CT. Ann Biomed Eng. 2013;41:2565–74.CrossRefGoogle Scholar
  65. 65.
    Feldman M, Elefteraides JA. Triggers of aortic dissection. In: Boudoulas H, Stefanadis C, editors. The aorta: structure, function, dysfunction, and diseases. New York, NY: Informa Healthcare; 2009. p. xi. 259 p.Google Scholar
  66. 66.
    Dean JH, Woznicki EM, O’Gara P, et al. Cocaine-related aortic dissection: lessons from the international registry of acute aortic dissection. Am J Med. 2014;127:878–85.CrossRefGoogle Scholar
  67. 67.
    Singh S, Trivedi A, Adhikari T, Molnar J, Arora R, Khosla S. Cocaine-related acute aortic dissection: patient demographics and clinical outcomes. Can J Cardiol. 2007;23:1131–4.CrossRefGoogle Scholar
  68. 68.
    Daniel JC, Huynh TT, Zhou W, et al. Acute aortic dissection associated with use of cocaine. J Vasc Surg. 2007;46:427–33.CrossRefGoogle Scholar
  69. 69.
    Hsue PY, Salinas CL, Bolger AF, Benowitz NL, Waters DD. Acute aortic dissection related to crack cocaine. Circulation. 2002;105:1592–5.CrossRefGoogle Scholar
  70. 70.
    Li W, Su J, Sehgal S, Altura BT, Altura BM. Cocaine-induced relaxation of isolated rat aortic rings and mechanisms of action: possible relation to cocaine-induced aortic dissection and hypotension. Eur J Pharmacol. 2004;496:151–8.CrossRefGoogle Scholar
  71. 71.
    Dabbouseh NM, Ardelt A. Cocaine mediated apoptosis of vascular cells as a mechanism for carotid artery dissection leading to ischemic stroke. Med Hypotheses. 2011;77:201–3.CrossRefGoogle Scholar
  72. 72.
    Rylski B, Hoffmann I, Beyersdorf F, et al. Iatrogenic acute aortic dissection type A: insight from the German Registry for Acute Aortic Dissection Type A (GERAADA). Eur J Cardiothorac Surg. 2013;44:353–9. discussion 359CrossRefGoogle Scholar
  73. 73.
    Januzzi JL, Sabatine MS, Eagle KA, et al. Iatrogenic aortic dissection. Am J Cardiol. 2002;89:623–6.CrossRefGoogle Scholar
  74. 74.
    Zhang R, Kofidis T, Baus S, Klima U. Iatrogenic type A dissection after attempted stenting of a descending aortic aneurysm. Ann Thorac Surg. 2006;82:1523–5.CrossRefGoogle Scholar
  75. 75.
    Adams RF, Argilla M, Srichai MB. Iatrogenic aortopulmonary window and pulmonary artery dissection secondary to aortic cannulation. Circulation. 2013;128:e180–1.CrossRefGoogle Scholar
  76. 76.
    Sailer AM, van Ommen VG, Tordoir JH, Schurink GW, van Zwam WH. Iatrogenic type A aortic dissection: conservative treatment after complicated left subclavian artery recanalization. J Vasc Interv Radiol. 2013;24:1923–5.CrossRefGoogle Scholar
  77. 77.
    Tsukashita M, Deanda A, Balsam L. Type A aortic dissection: a rare complication of central venous catheter placement. J Card Surg. 2014;29:368–70.CrossRefGoogle Scholar
  78. 78.
    Stanger O, Schachner T, Gahl B, et al. Type A aortic dissection after nonaortic cardiac surgery. Circulation. 2013;128:1602–11.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Aortic Institute at Yale-New Haven HospitalYale University School of MedicineNew HavenUSA

Personalised recommendations