Advertisement

Human-Factors Requirements for Putting a Man in Orbit

  • Siegfried J. Gerathewohl
  • George R. Steinkamp
Chapter

Abstract

Man’s survival and operational capability in an artificial earth satellite depend primarily on the reliability and accuracy of the launching, guidance and recovery operations on the one hand, and on the perfection of his engineered environment, on the other. Although the human organism is much more sensitive and vulnerable than that of many other creatures, his greater versatility and higher intelligence assure his survival under new and threatening circumstances. If a physiologically habitable environment is created, and if its functions during orbiting are secured, the human passenger can withstand the stresses involved in manned satellite operations of a limited duration.

Zusammenfassung

Die Überlebenschancen und Arbeitsbedingungen in einem bemannten Erdsatelliten hängen einerseits von der Zuverlässigkeit und Genauigkeit der Start-, Führungs- und Landeoperationen, und andererseits von den Eigenschaften der dabei verwendeten Kabine und ihrer technischen Vollkommenheit ab. Obgleich der Mensch einen empfindlicheren und leichter störbaren Organismus besitzt als viele andere Lebewesen, ermöglichen ihm seine Vielseitigkeit und höhere Intelligenz die erfolgreiche Anpassung an neue und lebensbedrohende Umweltsbedingungen. Falls physiologisch angemessene Verhältnisse in einem Satelliten geschaffen und auch in der Umlaufbahn aufrecht erhalten werden können, wird sich der menschliche Organismus den Anforderungen bemannter Satellitenoperationen von begrenzter Dauer gewachsen erweisen.

Résumé

La survivance de l’homme et l’intégrité de ses capacités opératoires à bord d’un satellite artificiel dépendent en premier lieu de la précision et de la sécurité dans les opérations de lancement, guidage et récupération d’une part et dans l’excellence du conditionnement de la cabine d’autre part. Quoique l’organisme humain soit beaucoup plus sensible et vulnérable que celui de beaucoup d’autres créatures, son adaptabilité et son intelligence supérieure peuvent assurer sa survivance dans des circonstances nouvelles et menaçantes. Par la création d’un habitat physiologique convenable, fonctionnant avec sécurité pendant la description de l’orbite, le passager pourra résister aux tensions impliquées dans une mission en satellite pendant une période limitée.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Armstrong, H. Haber and H. Strughold, The Aero Medical Problems of Space Travel. Panel Meeting, School of Aviation Medicine. J. Aviat. Med 20, 383 (1949).Google Scholar
  2. 2.
    H. J. von Beckh, Multidirectional G-protection in Flight and During Escape. 2nd Europ. Congr. Aviat. Med., Stockholm, Sweden, Sept. 16–19. 1957.Google Scholar
  3. 3.
    C. A. Berry, The Environment of Space in Human Flight. In: Epitome of Space Medicine, Air University, USAF School of Aviation Medicine, Randolph AFB, Texas, 1958.Google Scholar
  4. 4.
    P. A. Campbell et al., Space Travel: A Symposium. J. Aviat. Med. 28, 479 (1957).Google Scholar
  5. 5.
    H. G. Clamann, Problems of Respiratory Metabolism in Sealed Cabins. In: Epitome of Space Medicine, Air University, USAF School of Aviation Medicine, Randolph AFB, Texas, 1958.Google Scholar
  6. 6.
    S. J. Gerathewohl, Personal Experiences During Short Periods of Weightlessness Reported by sixteen Subjects. Astronaut. Acta 2, 203 (1956).Google Scholar
  7. 7.
    S. J. Gerathewohl, O. L. Ritter and H. D. Stallings, Jr., Producing the Weightless State in Jet Aircraft. Astronaut. Acta 4, 15 (1958).Google Scholar
  8. 8.
    F. Haber, Escape and Survival at High Altitudes. Air University, USAF School of Aviation Medicine, Randolph AFB, Texas, September, 1953.Google Scholar
  9. 9.
    E. J. Kendricks, H. Strughold, Douglas Aircraft Company, Inc., H. Haber and S. J. Gerathewohl, Medical Problems of Space Flight. A Special Report. Air University, USAF School of Aviation Medicine, Randolph AFB, Texas, August, 1955.Google Scholar
  10. 10.
    E. Manring and M. Dubin, Satellite Micrometeorite Measurements. In: IGY World Date Center A, Rockets and Satellites (Some Preliminary Reports of Experiments in Satellites 1958 Alpha and Gamma). IGY Satellite Report Series No. 3, May, 1958.Google Scholar
  11. 11.
    H. Preston-Thomas, R. Edelberg, J. P. Henry, J. Miller, E. W. Salzmann and G. D. Zuidema, Human Tolerance to Multistage Rocket Acceleration Curves. J. Aviat. Med. 26, 390 (1955).Google Scholar
  12. 12.
    H. Strughold, Medical Problems Involved on Orbital Space Flight. Jet Propulsion 26, 745 (1956).CrossRefGoogle Scholar
  13. 13.
    E. R. Taylor, Physical and Physiological Data for Bioastronautics. School of Aviation Medicine, United States Air Force, 1958.Google Scholar
  14. 14.
    J. A. Van Allen, G. H. Ludwig, E. C. Ray and C. E. McIlwain, Observation of High Intensity Radiation by Satellites 1958 Alpha and Gamma. Special Report, assisted by U.S./I.G.Y. Project No. 321 of the National Academy of Sciences and the National Science Foundation. May, 1958.Google Scholar
  15. 15.
    J. E. Ward, S. J. Gerathewohl and G. R. Steinkamp, Supersonic and Hypersonic Human Flight. Institute of Aeronautical Sciences, Preprint No. 797, January 27–30, 1958.Google Scholar
  16. 16.
    C. S. White and O. O. Benson, Jr. (Edit.), Physics and Medicine of the Upper Atmosphere; A Study of the Aeropause. Albuquerque: University of New Mexico Press, 1952.Google Scholar

Copyright information

© Springer-Verlag Wien 1959

Authors and Affiliations

  • Siegfried J. Gerathewohl
    • 1
  • George R. Steinkamp
    • 1
  1. 1.School of Aviation MedicineUSAFRandolph Air Force BaseUSA

Personalised recommendations