Advertisement

On the Development of Orbital Techniques

A Classification of Orbital Carriers and Satellite Vehicles
  • H. H. Koelle
Chapter

Abstract

This paper presents a classification of orbital carriers, satellite vehicles and re-entry vehicles according to their control requirements and maneuverability. Nine different types of orbital carriers, twelve different types of typical satellite vehicles and seven typical orbital return-and-recovery schemes are defined and explained in three tables.

About 860 unclassified references, listed in the bibliography, are considered to be a representative cross section of the available literature on the satellite problem. This compilation should be useful for further study of the problem.

Zusammenfassung

Die vorliegende Arbeit bringt eine Klassifizierung von Trägerraketen, künstlichen Satelliten und Fahrzeugen für den Wiedereintritt in die Atmosphäre unter Berücksichtigung ihrer Kontrollerfordernisse und ihrer Manövrierbarkeit. Neun verschiedene Arten von Trägerraketen, zwölf Arten typischer Satellitenfahrzeuge und sieben Typen von Fahrzeugen zur Rückkehr aus der Umlaufbahn und Wiedererlangung werden definiert und in drei Tabellen erläutert.

Rund 860 unklassifizierte Literaturangaben dürften einen repräsentativen Querschnitt der gegenwärtig verfügbaren Literatur über das Satellitenproblem darstellen. Diese Zusammenstellung sollte, wie zu hoffen, für das weitere Studium des Problems von Nutzen sein.

Résumé

Une classification des véhicules de transport orbital, des satellites et des engins susceptibles d’une réentrée suivant leurs exigences de guidage et maniabilité. Neuf types différents de transports, douze de satellites et sept de repénétration sont définis et décrits dans trois tableaux.

Environ 860 références déclassifiées sont citées et donnent un aperçu de la littérature utilisable. Cette compilation devrait avoir son utilité pour les études ultérieures.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Artificial Satellites (General)

  1. 1.
    Anonymous, President’s Message on Space Agency. Science 127, 864 (1958).Google Scholar
  2. 2.
    Anonymous, Space Program Offered by Killian Advisory Committee. Science 127, 803 (1958).Google Scholar
  3. 3.
    Anonymous, The Motion of a Nearby Satellite with Highly Inclined Orbit — Abstract, Smithsonian Astrophysical Observatory, California University.Google Scholar
  4. 4.
    Anonymous, The Russian Literature of Satellites, Part I. New York: International Physical Index Inc., 1958.Google Scholar
  5. 5.
    Anonymous, The Third Soviet Artificial Earth Satellite. Pravda, No. 138, 3 (1958).Google Scholar
  6. 6.
    M. Allward, The Space Age is Here. Spaceflight 1, 196 (1958).Google Scholar
  7. 7.
    D. R. Bates and P. Moore, Space Research and Exploration. London 1958.Google Scholar
  8. 8.
    R. B. Beard, Space Flight and Satellite Vehicles. New York: Pitman Publishing Co., 1958.Google Scholar
  9. 9.
    M. Benton, Artificial Satellites — A Bibliography of Recent Literature. I: Jet Propulsion 28, 301 (1958); II: Jet Propulsion 28, 399 (1958).Google Scholar
  10. 10.
    E. Bergaust and W. Beller, Satellite, p. 287. New York: Hanover House, 1956.Google Scholar
  11. 11.
    W. von Braun, The Importance of Satellite Vehicles in Interplanetary Flights. Proceedings, II International Astronautical Congress, London 1951, p. 8; J. Brit. Interplan. Soc. (Supplement) 10 (1951).Google Scholar
  12. 12.
    W. von Braun and W. Ley, Die Eroberung des Weltraumes, p. 195. Frankfurt/Main, Germany: Fischer-Bücherei, 1958.Google Scholar
  13. 13.
    W. von Braun, The Early Steps in the Realization of the Space Station. J. Brit. Interplan. Soc. 12, 23 (1953).Google Scholar
  14. 14.
    W. von Braun, Space Superiority. Ordnance 37, 770 (1953).Google Scholar
  15. 15.
    W. von Braun, Space Travel and Our Technological Revolution. Missiles and Rockets 2, 75 (1957).Google Scholar
  16. 16.
    W. von Braun, We Need a Coordinated Space-Flight Program. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 206.Google Scholar
  17. 17.
    E. Burgess, The Establishment and Use of Artificial Satellites. Aeronautics 21, 70 (1949).Google Scholar
  18. 18.
    E. Burgess, Satellites and Space Flight, p. 160. London: Chapman and Hall, 1957.Google Scholar
  19. 19.
    L. J. Carter (ed.), Realities of Space Travel. London: Putnam Publishing Co., 1957; New York: McGraw Hill Book Co., 1957, p. 431.Google Scholar
  20. 20.
    A. C. Clarke, The Making of a Moon, p. 205. New York: Harper & Brothers Publishing Co., 1957.Google Scholar
  21. 21.
    A. C. Clarke, Visit to Vanguard. Spaceflight 1, 27 (1957).Google Scholar
  22. 22.
    C. Coombs, Rockets, Missiles and Moons, p. 256. New York: Morrow Publishing Co., 1957.Google Scholar
  23. 23.
    D. Cox and M. Stoike, Spacepower, p. 260. Philadelphia: Winston Publishing Co., 1958.Google Scholar
  24. 24.
    H. L. Dryden, Space Technology and NACA. Aeronaut. Engng. Rev. 17, 32 (1958).Google Scholar
  25. 25.
    K. A. Ehricke, ARS Urges National Space Flight Program. Astronautics 3, No. 1, 18 (1958).Google Scholar
  26. 26.
    K. A. Ehricke, Basic Aspects of Operations in Cislunar and Lunar Space. Amer. Rocket Soc. Rep. No. 235A-55 (1955).Google Scholar
  27. 27.
    K. A. Ehricke, The Anthropology of Astronautics. Astronautics 2, No. 4, 26 (1957).Google Scholar
  28. 28.
    R. Engel, V. T. Boedewadt and K. Hanisch, Die Außenstation — ein Zukunftsprojekt (The Space-Station — A Projekt of the Future), in: H. Gartmann (ed.); Raumfahrtforschung, p. 117, München: R. Oldenbourg, 1952.Google Scholar
  29. 29.
    E. K. Fedorov and G. A. Skuridin, Rakety I Iskusstvennye Sputniki Zemli V Issledovaniiakh Veryhnei Atmosfery (Rockets and Artificial Satellites in Studies of the Upper Atmosphere). Vestnik Akademii Nauk SSSR 27, No. 8, 37 (1957).Google Scholar
  30. 30.
    V. I. Feodosev and G. B. Sinyarev, Vvedeni v Raketnuyu Tekhniku (Introduction to Rocket Technology), p. 376. Moscow: Oborongiz, 1956.Google Scholar
  31. 31.
    J. V. Forrestal, First Annual Report to U. S. Congress on the National Military Establishment (1948).Google Scholar
  32. 32.
    A. Fritz, Start in die dritte Dimension (Take-off into the Third Dimension), p. 224. Stuttgart: Herold Verlag, 1958.Google Scholar
  33. 33.
    K. W. Gatland, A. E. Dixon and A. M. Kunesch, Initial Objectives in Astronautics. J. Brit. Interplan. Soc. 9, 155 (1950).Google Scholar
  34. 34.
    K. W. Gatland, Rockets and Artificial Satellites in the IGY. Spaceflight 1, 130 (1957).Google Scholar
  35. 35.
    K. A. Gil’zin, Ot Rakety do Kosmicheskogo Korablya (From Rocket to Cosmic Ship), p. 112. Moscow: Oborongiz, 1954.Google Scholar
  36. 36.
    K. A. Gil’zin, Puteshestvie k Dalekim (Voyage to Distant Worlds), p. 280. Moscow: Detgiz, 1956.Google Scholar
  37. 37.
    R. P. Haviland, Can We Build a Station in Space? Flying 44, No. 5, 19 (1956).Google Scholar
  38. 38.
    R. P. Haviland, What the Future Holds for Earth Satellites. Proceedings, III Annual Meeting American Astronautical Society, p. 77 (1956).Google Scholar
  39. 39.
    I. Hersey, National Astronautical Program begins to Take Shape. Astronautics 3, 20 (1958).Google Scholar
  40. 40.
    T. R. Killian et al., Einführung in die Probleme und Möglichkeiten der Weltraumfahrt (Introduction to the Problems and Possibilities of Space Travel). Weltraumfahrt 9, 33 (1958).Google Scholar
  41. 41.
    A. R. Krull, A History of the Artificial Satellite. Jet Propulsion 26, 15 (1956).Google Scholar
  42. 42.
    W. Ley, Rockets, Missiles and Space Travel, p. 528. New York: The Viking Press, 1957.Google Scholar
  43. 43.
    W. Ley and W. von Braun, The Exploration of Mars. New York: The Viking Press, 1956.Google Scholar
  44. 44.
    L. Mallan, Space Satellites, p. 144. Connecticut: Fawcett Publications, 1958.Google Scholar
  45. 45.
    P. Moore, Earth Satellites. Vall-Ballou Press, 1956.Google Scholar
  46. 46.
    A. N. Nesmeyanow, Problema Sozdaniya Iskusstvennogo Sputnika Zemli (The Problem of Creating an Artificial Earth Satellite). Pravda, No. 152, 2 (1957).Google Scholar
  47. 47.
    H. Oberth, Grundprobleme der Raumschiffahrt (Fundamental Problems of Space-Flight); in: W. Ley (ed.), Die Möglichkeit der Weltraumfahrt. Leipzig: Hachmeister & Thal, 1928.Google Scholar
  48. 48.
    H. Oberth, Stationen im Weltraum (Stations in Space), in: H. Gartmann (ed.), Raumfahrtforschung, p. 156. München: R. Oldenbourg, 1952.Google Scholar
  49. 49.
    N. V. Petersen, General Characteristics of Satellite Vehicles. J. Astronautics 2, 41 (1955).Google Scholar
  50. 50.
    G. v. Pirquet, Die Außenstation — das Sprungbrett ins Weltall (The Artificial Satellite — the Springboard into Space), in: Weltraumfahrt Utopie? p. 22. Wien: Verlag Natur und Technik, 1948.Google Scholar
  51. 51.
    T. S. Power, Air Force Research and Development in Space Technology. Aeronaut. Engng. Rev. 16, 36 (1957).Google Scholar
  52. 52.
    R. E. Roberson, Scientist Warns of Space Effort Pitfalls. Aviat. Week, 28 Apr., 53 (1958).Google Scholar
  53. 53.
    E. Ryabchikov, Sputnik Zemli (Earth Satellite). Ogonek 24, 25 (1957).Google Scholar
  54. 54.
    E. Sänger, Raumfahrt — Einige politische Aspekte (Space Flight — Some Political Aspects). Weltraumfahrt 9, 12 (1958).Google Scholar
  55. 55.
    A. A. Shternfeld, Iskusstvennye Sputniki Zemli (Artificial Earth Satellites), p. 180. Moscow: Gostekhizdat, 1956.Google Scholar
  56. 56.
    G. H. Stine, Earth Satellites and the Race for Space Superiority, p. 191. New York: Ace Books, 1957.Google Scholar
  57. 57.
    P. F. Winternitz, The Physical and Chemical Fundamentals of Satellite Flight. J. Astronautics 3, 43 (1956).Google Scholar

Satellite Trajectories and Orbits (General)

  1. 1.
    Anonymous, Orbital Behavior of Earth Satellites. J. Franklin Institute 263, 181 (1957).Google Scholar
  2. 2.
    R. H. Bacon, Motion Relative to the Surface of the Rotating Earth. Amer. J. Physics 19, 52 (1952).Google Scholar
  3. 3.
    A. Boni, Artificial Satellite, Unification and Mechanics (Sidar-Mechanics). Astronaut. Acta 1. 120 (1955).Google Scholar
  4. 4.
    K. A. Ehricke, Flight Mechanics of the Satelloid. Aero Digest, No. 7, p. 46 (1956).Google Scholar
  5. 5.
    C. R. Gates, Equations of Motion of a Missile and a Satellite for an Oblate-Spheroidal Rotating Earth. Jet Propulsion Laboratory, Rep. 20–142, 36 (1957).Google Scholar
  6. 6.
    V. L. Ginzburg, Experimental Verification of the General Theory of Relativity and Artificial Satellites of the Earth. Priroda 45, 30 (1956).Google Scholar
  7. 7.
    H. R. J. Grosch, Electronic Computers and Orbit Calculation. Proceedings, VII International Astronautical Congress, Rome 1956, p. 401.Google Scholar
  8. 8.
    S. Herrick, R. M. L. Baker and C. G. Hilton, Gravitational and Related Constants for Accurate Space Navigation. Proceedings, VII International Astronautical Congress, Barcelona 1957, p. 197.Google Scholar
  9. 9.
    H. B. Ketchum, Navigational Calculations in Space Flight III. J. Spaceflight 5, No. 10, 1 (1953).MathSciNetGoogle Scholar
  10. 10.
    W. B. Klemperer and E. T. Benedikt, Selenoid Satellites. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 563; Astronaut. Acta 4, 25 (1958).Google Scholar
  11. 11.
    J. M. J. Kooy and J. W. H. Uytenbogaart, Ballistics of the Future. Haarlem: A. Stam, 1946.Google Scholar
  12. 12.
    D. F. Lawden, The Calculation of Orbits. J. Brit. Interplan. Soc. 14, 204 (1955).Google Scholar
  13. 13.
    D. F. Lawden, Fundamentals of Space Navigation. J. Brit. Interplan. Soc. 13, 87 (1954).Google Scholar
  14. 14.
    D. F. Lawden, General Motion of a Rocket in a Gravitational Field. J. Brit. Interplan. Soc. 6, 187 (1947).Google Scholar
  15. 15.
    F. R. Moulton, Celestial Mechanics. New York: Macmillan Publishing Co., 1914.Google Scholar
  16. 16.
    W. A. Orr, The Mechanics of Some Interspace Orbits. Amer. Rocket Soc. Rep. No. 603-58 (1958).Google Scholar
  17. 17.
    R. E. Roberson, Gravitational Torque on a Satellite Vehicle. J. Franklin Institute 264, No. 6, 13 (1958).MathSciNetGoogle Scholar
  18. 18.
    R. E. Roberson and D. Tatistcheff, The Potential Energy of a Small Rigid Body in the Gravitational Field of an Oblate Spheroid. J. Franklin Institute 262, 209 (1956).MathSciNetGoogle Scholar
  19. 19.
    W. Schaub, Die himmelsmechanischen Grundlagen der Raumfahrt (Celestial Mechanics of Space-Flight), in: H. Gartmann (ed.), Raumfahrtforschung, p. 27. München: R. Oldenbourg, 1952.Google Scholar
  20. 20.
    M. Summerfield, Problems of Launching an Earth Satellite, I and II. Astronautics 2, No. 4, 18, and 2, No. 5, 34 (1957).Google Scholar

Ascent Trajectories

  1. 1.
    Anonymous, Flight Mechanics of a Satellite Rocket. Project Rand Douglas Aircraft Company Rep. No. RA-15021.Google Scholar
  2. 2.
    P. Blanc, Balistique Extérieure des Fusées dans le Vide et avec Champ de Pesanteur Constant. Mém. Artillerie Française 24 (1950).Google Scholar
  3. 3.
    A. E. Bryson, Jr. and S. E. Ross, Optimum Rocket Trajectories with Aerodynamic Drag. Amer. Rocket Soc. Preprint No. 542-57, 14 (1957).Google Scholar
  4. 4.
    T. N. Edelbaum, Comments on the Powered Flight Trajectory of a Satellite. Jet Propulsion 27, 342 (1957).Google Scholar
  5. 5.
    K. A. Ehricke, Ascent of Orbital Vehicles. Astronaut. Acta 2, 175 (1956).Google Scholar
  6. 6.
    F. D. Faulkner, The Problem of Goddard and Optimum Thrust Programming. Research Paper II, Navy Postgraduate School, p. 10 (1957).Google Scholar
  7. 7.
    B. D. Fried, On the Powered Flight Trajectory of an Earth Satellite. Jet Propulsion 27, 641 (1957).Google Scholar
  8. 8.
    A. R. Hibbs, Optimum Burning Program for Horizontal Flight. J. Amer. Rocket Soc. 22, 204 (1952).Google Scholar
  9. 9.
    J. Jensen, Satellite Ascent Guidance Requirements. J. Astronautics 3, 1 (1956).Google Scholar
  10. 10.
    J. Jensen, Satellite Ascent Mechanics. Jet Propulsion 26, 359 (1956).Google Scholar
  11. 11.
    J. M. J. Kooy, On the Application of the Method of Variation of Elliptic Orbit Elements in Case of a Satellite Vehicle. Astronaut. Acta 3, 180 (1957).MathSciNetGoogle Scholar
  12. 12.
    A. A. Kosmodem’yanskii, Obshchie Teoremy Mekhaniki Tela Peremennoi Massy (General Theorems of the Mechanics of a Body of Variable Mass), p. 16. Moscow: Izd. VVIV, 1946.Google Scholar
  13. 13.
    A. A. Kosmodem’yanskii, Mekhanika Tel Peremennoi Massy; Teoriya Reaktirnogo Dvizheniya (Mechanics of Bodies of Variable Mass; Theory of Jet Propulsion), p. 110. Moscow: Izd. VVIA, 1947.Google Scholar
  14. 14.
    V. F. Krotov, Calculation of the Optimum Trajectory for the Transition of a Rocket to a Given Trajectory Around the Earth, Volume of 19 papers on Theoretical Mechanics. Moscow, 1955.Google Scholar
  15. 15.
    D. F. Lawden, Entry Into Circular Orbits. J. Brit. Interplan. Soc. 10, 5 (1951); 13, 27 (1954).Google Scholar
  16. 16.
    D. F. Lawden, Initial Arc of the Trajectory of Departure. J. Brit. Interplan. Soc. 7, 119 (1948).Google Scholar
  17. 17.
    D. F. Lawden, Interorbital Transfer of a Rocket. J. Brit. Interplan. Soc. 11, 321 (1952).Google Scholar
  18. 18.
    D. F. Lawden, Inter-Orbital Transfer with Minimum Propellant Expenditure. Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 146.Google Scholar
  19. 19.
    D. F. Lawden, Orbital Transfer via Tangential Ellipses. J. Brit. Interplan. Soc. 11, 278 (1952).Google Scholar
  20. 20.
    D. F. Lawden, Optimum Launching of a Rocket into an Orbit About the Earth. Astronaut. Acta 1, 185 (1955).Google Scholar
  21. 21.
    D. F. Lawden, Optimal Programming of Rocket Thrust direction. Astronaut. Acta 1, 41 (1955).MathSciNetGoogle Scholar
  22. 22.
    G. Leitmann, Optimum Thrust Programming for High-Altitude Rockets. Aeronaut. Engng. Rev. 16, No. 6, 63 (1957).Google Scholar
  23. 23.
    A. Miele, Minimality for Arbitrarily Inclined Rocket Trajectories. Jet Propulsion 28, 481 (1958).Google Scholar
  24. 24.
    A. Miele, Optimum Burning Program as Related to Aerodynamic Heating for a Missile Traversing the Earth’s Atmosphere. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 257.Google Scholar
  25. 25.
    A. Miele, Optimum Thrust Programming Along Arbitrarily Inclined Rectilinear Paths. Amer. Rocket Soc. Preprint No. 604-58 (1958).Google Scholar
  26. 26.
    R. R. Newton, On the Optimum Trajectory of a Rocket, p. 54. Department of Physics, Tulane University, New Orleans, 1957.Google Scholar
  27. 27.
    D. E. Okhotsimskii and T. M. Eneev, Nekotorye Variatsionnye Zadachi, Sviazannye s Zapuskom Iskusstvennogo Sputnika Zemli (Some Variation Problems Connected with the Launching of Artificial Satellites of the Earth). Usp. Fiz. Nauk 63, No. 1, 5 (1957).Google Scholar
  28. 28.
    R. H. Olds, Optimum Variation of Exhaust Velocity During Burning. Jet Propulsion 28, 405 (1958).Google Scholar
  29. 29.
    F. M. Perkins, Flight Mechanics of Ascending Satellite Vehicles. Jet Propulsion 26, 352 (1956).Google Scholar
  30. 30.
    J. S. Prigge, The Application of High Speed Digital Computers to the Optimization of the Powered-Flight Trajectories of Long Range Ballistic Missiles, in Orbital and Satellite Vehicles I. Massachusetts Institute of Technology (1957).Google Scholar
  31. 31.
    V. V. Radzievskii and B. E. Gelfgat, Ob Ogranichennoi Zadache Duukh tel Pevemennoi Massy (On the Restricted Problem of Two Bodies of Variable Mass). Astronom. Zhur. 34, 581 (1957).Google Scholar
  32. 32.
    A. C. Robotti, Un Modo Di Lanciare I Satelliti Artificiali (On a Method of Launching an Artificial Satellite). Proceedings, VII International Astronautical Congress, Rome 1956, p. 167.Google Scholar
  33. 33.
    S. Ross, Minimality for Problems in Vertical and Horizontal Rocket Flight. Jet Propulsion 28, 55 (1958).Google Scholar
  34. 34.
    E. Sänger, Atlas konkreter Bahnen von Raketenflugzeugen bis zur Außenstation (Map of Real Trajectories of Rocket Airplanes to an Artificial Satellite). Bericht No. 3, Forschungsreihe der Nordwestdeutschen Gesellschaft für Weltraumforschung e. V. (1951).Google Scholar
  35. 35.
    K. Stehling and R. M. Missert, High Altitude Launching of a Small Orbital Vehicle. Amer. Rocket Soc. Preprint No. 187-54, 18 (1954).Google Scholar
  36. 36.
    R. A. Struble et al., The Trajectory of a Rocket with Thrust. Jet Propulsion 28, 472 (1958).Google Scholar
  37. 37.
    H. S. Tsien and R. C. Evans, Optimum Thrust Programming for a Sounding Rocket. J. Amer. Rocket Soc. 21, 99 (1951).Google Scholar

Circular and Elliptic Orbits

  1. 1.
    Anonymous, Calculation of Satellite Orbits. Army Ballistic Missile Agency Rep. No. DV-TN-66-58 (1958).Google Scholar
  2. 2.
    R. A. Anderson and C. S. L. Keay, A Simple Method of Plotting the Track of an Earth Satellite. J. Brit. Interplan. Soc. 16, 355 (1958).Google Scholar
  3. 3.
    L. Blitzer, Effect of Earth’s Oblateness on Satellite Period. Jet Propulsion 27, 405 (1957).Google Scholar
  4. 4.
    L. Blitzer, M. Weisfield and A. D. Wheelon, Perturbations of a Satellite’s Orbit Due to the Earth’s Oblateness. J. Appl. Physics 27, 1141 (1956).zbMATHGoogle Scholar
  5. 5.
    D. Brouwer, The Motion of a Particle with Negligible Mass under the Gravitational Attraction of a Spheroid. Astronom. J. 51, 223 (1946).MathSciNetGoogle Scholar
  6. 6.
    A. C. Clarke, Stationary Orbits. J. Brit. Astronom. Ass. 57, 232 (1947).Google Scholar
  7. 7.
    C. A. Cross, Orbits for an Extra-Terrestrial Observatory. J. Brit. Interplan. Soc. 13, 204 (1954).Google Scholar
  8. 8.
    C. A. Cross, The Satellite Paradox. J. Brit. Interplan. Soc. 16, 110 (1957).Google Scholar
  9. 9.
    A. Das, The Artificial Satellite and the Relativistic Red Shift. Progr. Theor. Physics 18, 554 (1957).zbMATHGoogle Scholar
  10. 10.
    R. J. Davis, F. L. Whipple and J. B. Zirker, The Orbit of a Small Earth Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 1. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  11. 11.
    J. de Nike, The Effect of the Earth’s Oblateness and Atmosphere on a Satellite Orbit. J. Franklin Institute 262, 69 (1956).Google Scholar
  12. 12.
    B. Egerton, Spiral and Elliptical Orbits. J. Aeronaut. Res. 61, 422 (1957).Google Scholar
  13. 13.
    J. R. Ford, Probable Error in Measuring the Eccentricity and Orientation of an Elliptical Orbit of a 300 lb. Payload Satellite. Research Corporation of America, Janus Memo No. 100-4 (1957).Google Scholar
  14. 14.
    F. George, A Simple Graphical Solution for Satellite Orbits. J. Inst. Navigation 2, 98 (1958).Google Scholar
  15. 15.
    V. L. Ginzburg, Experimental Verification of the General Theory of Relativity and Artificial Satellites of the Earth. Priroda 45, 30 (1956).Google Scholar
  16. 16.
    P. Herget, The Computation of Orbits, p. 177. Cincinnati: Published by the Author, 1948.Google Scholar
  17. 17.
    S. Herrick, Tables for Rocket and Comet Orbits. U. S. Dept. of Commerce, National Bureau of Standards, p. 100 (1953).Google Scholar
  18. 18.
    B. Hoffman, General Relativistic Red Shift and the Artificial Satellite. Physic. Rev. 106, 358 (1957).Google Scholar
  19. 19.
    W. B. Klemperer and R. M. Baker, Satellite Librations. Proceedings, VII International Astronautical Congress, Rome 1956, p. 3; Astronaut. Acta 3, 16 (1957).Google Scholar
  20. 20.
    W. B. Klemperer and E. T. Benedikt, Selenoid Satellites. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 563; Astronaut. Acta 4, 25 (1958).Google Scholar
  21. 21.
    J. M. J. Kooy, On the Application of the Method of Variation of Elliptic Orbit Elements in Case of a Satellite Vehicle. Proceedings, VII International Astronautical Congress, Rome 1956, p. 705; Astronaut. Acta 3, 180 (1957).Google Scholar
  22. 22.
    H. G. L. Krause, The Motion of a Satellite Station Around the Earth in an Elliptical Orbit Inclined to the Earth’s Equator. Rand Corporation No. T-52, 26 (1955).Google Scholar
  23. 23.
    H. G. L. Krause, Die Kinematik einer Außenstation in einer zur Äquatorebene geneigten elliptischen Bahn (The Kinematics of an Artificial Satellite in an Inclined Trajectory with Respect to the Equatorial Plane). Gesellschaft für Weltraumforschung (1951); Weltraumfahrt 3, 17 (1952).Google Scholar
  24. 24.
    H. G. L. Krause, Die säkularen Störungen einer Außenstationsbahn (The Secular Perturbations in the Orbit of an Artificial Satellite). Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 162.Google Scholar
  25. 25.
    H. G. L. Krause, Die säkularen und periodischen Störungen der Bahn eines künstlichen Satelliten (Secular and Periodic Perturbations on Satellite Orbits). Proceedings, VII International Astronautical Congress, Rome 1956, p. 523.Google Scholar
  26. 26.
    H. G. L. Krause, Zum Problem: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß der Änderung desselben auf die Bahnelemente (Comments on the Problem: The Determination of Trajectory Elements from the Velocity Vector and the Influence of a Change of this Vector on the Trajectory Elements). Weltraumfahrt 5, 48 (1954).Google Scholar
  27. 27.
    L. La Pas, Advances of the Perigees of Earth-Satellites Predicted by General Relativity. J. Astronomical Society Pacific 66, 13 (1954).Google Scholar
  28. 28.
    D. F. Lawden, The Calculation of Orbits. J. Brit. Interplan. Soc. 14, 204 (1955).Google Scholar
  29. 29.
    D. F. Lawden, Correction of Interplanetary Orbits. J. Brit. Interplan. Soc. 13, 215 (1954).Google Scholar
  30. 30.
    D. F. Lawden, The Determination of Minimal Orbits. J. Brit. Interplan. Soc. 11, 216 (1952).Google Scholar
  31. 31.
    D. F. Lawden, Inter-Orbital Transfer of a Rocket. J. Brit. Interplan. Soc. 11, 321 (1952).Google Scholar
  32. 32.
    D. F. Lawden, Inter-Orbital Transfer with Minimum Propellant Expenditure. Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 146.Google Scholar
  33. 33.
    D. F. Lawden, Orbital Transfer via Tangential Ellipses. J. Brit. Interplan. Soc. 11, 278 (1952).Google Scholar
  34. 34.
    J. Logie, Effect of Tidal Friction on a Near Satellite. J. Brit. Interplan. Soc. 13, 170 (1954).Google Scholar
  35. 35.
    W. McKay, Mechanics of Orbits, in Orbital and Satellite Vehicles I. Massachusetts Institute of Technology (1957).Google Scholar
  36. 36.
    C. Moller, On the Possibility of Terrestrial Tests of the General Theory of Relativity. Nuovo Cimento 6, 381 (1957).zbMATHGoogle Scholar
  37. 37.
    J. A. O’Keefe, An Application of Jacobi’s Integral to the Motion of an Earth Satellite. Astronom. J. 62, 265 (1957).Google Scholar
  38. 38.
    J. A. O’Keefe and C. D. Batchlor, Perturbations of a Close Satellite by the Equatorial Ellipticity of the Earth. Astronom. J. 62, 183 (1957).Google Scholar
  39. 39.
    D. E. Okhotsimskii, T. M. Eneev and G. P. Taratynova, Opredelenie Vremeni Sushchestvovaniia Iskusstvennogo Sputnika Zemli I Issledovanie Vekovykh Vozmushchenii Ego Orbity (Development of Method for Lifetime Determinations for Elliptic Orbits with Secular Disturbances, Tables and Diagrams). Usp. Fiz. Nauk, No. 1a, 33 (1957).Google Scholar
  40. 40.
    D. Okhotsimsky, T. M. Eneev and G. P. Taratynova, Determining the Time of Existence of the Artificial Earth Satellite and Studying Secular Perturbations of its Orbit. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 514.Google Scholar
  41. 41.
    B. H. Paiewonsky, Transfer Between Vehicles in Circular Orbits. Jet Propulsion 28, 121 (1958).Google Scholar
  42. 42.
    E. F. Relf, Spiral and Elliptical Orbits. J. Roy. Aeronaut. Soc. 6, 634 (1957).Google Scholar
  43. 43.
    R. E. Roberson, Gravitational Torque on a Satellite Vehicle. J. Franklin Institute 264, 13 (1958).MathSciNetGoogle Scholar
  44. 44.
    R. E. Roberson, Orbital Behavior of Earth Satellites. J. Franklin Institute 263, 181 (1957).MathSciNetGoogle Scholar
  45. 45.
    R. E. Roberson, The Potential Energy of a Small Rigid Body in the Gravitational Field of an Oblate Spheroid. J. Franklin Institute 262, 209 (1956).MathSciNetGoogle Scholar
  46. 46.
    R. E. Roberson, Project Feedback-Orbital Motions. Rand Report No. 1376 (1947).Google Scholar
  47. 47.
    R. E. Roberson, Orbital Behavior of Earth Satellites II-Orbits About an Oblate Spheroid. J. Franklin Institute 263, 269 (1957).MathSciNetGoogle Scholar
  48. 48.
    E. Sänger, Laws of Motion of Space Travel. Interavia 4, 416 (1949).Google Scholar
  49. 49.
    W. Schaub, Möglichkeiten des Überganges aus einer Ellipsenbahn in eine Kreisbahn und umgekehrt (Possibility of Transfer from an Elliptical Trajectory into a Circular Orbit and Vice Versa). Weltraumfahrt 3, 81 (1952).Google Scholar
  50. 50.
    K. Schütte, Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß einer Änderung desselben auf die Bahnelemente (The Determination of Trajectory Elements from the Velocity Vector and the Influence of a Change of this Vector on the Trajectory Elements). Proceedings, IV International Astronautical Congress, Zürich 1953, p. 89.Google Scholar
  51. 51.
    J. L. Sedwick, Jr., Interpretations of Observed Perturbations on a Minimal Earth Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  52. 52.
    S. F. Singer, Application of an Artificial Satellite to the Measurement of the General Relativistic “Red Shift”. Physic. Rev. 104, 11 (1956).Google Scholar
  53. 53.
    S. F. Singer, Space Vehicles as Tools for Research in Relativity. J. Astronautics 4, 49 (1957).Google Scholar
  54. 54.
    S. F. Singer, Studies of a Minimum Orbital Unmanned Satellite of the Earth (Mouse), II. Orbits and Lifetimes. Astronaut. Acta 2, 125 (1956).Google Scholar
  55. 55.
    L. Spitzer, Perturbations of a Satellite. J. Brit. Interplan. Soc. 9, 131 (1950).Google Scholar
  56. 56.
    T. E. Sterne, Celestial Mechanics of Artificial Satellites. Sky and Telescope 17, 66 (1957).Google Scholar
  57. 57.
    M. Subotowicz, Satellites for Checking Einstein’s Relativity Theory. Missiles and Rockets 2, No. 2, 57 (1957).Google Scholar
  58. 58.
    G. P. Taratynova, O Dvizhenii Iskusstvennogo Sputnika Y Netsentral’nom Pole Tiagoteniia Zemli Pri Nalichii Soprotivleniia Atmosfery (Method for Orbit Calculations with Perturbations and Derivations of Equation of Motion of a Satellite in the Eccentric Gravity Field). Usp. Fiz. Nauk, No. 1a, 51 (1957).Google Scholar
  59. 59.
    F. Winterberg, Relativistische Zeitdilatation eines künstlichen Satelliten (Relativistic Time-Dilatation of an Artificial Satellite). Astronaut. Acta 2, 25 (1956).MathSciNetGoogle Scholar
  60. 60.
    I. M. Yatsunskii, O Vliianii Geofizicheskikh Faktorov na Dvishenie Sputnika (Effect of Geophysical Factors upon the Motion of an Artificial Satellite). Usp. Fiz. Nauk, No. 1a, 59 (1957).Google Scholar
  61. 1.
    H. G. L. Krause, Zum Problem: Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß der Änderung desselben auf die Bahnelemente (Comments on the Problem: The Determination of Trajectory Elements from the Velocity Vector and the Influence of a Change of this Vector on the Trajectory Elements). Weltraumfahrt 5, 48 (1954).Google Scholar
  62. 2.
    D. F. Lawden, Correction of Interplanetary Orbits. J. Brit. Interplan. Soc. 13, 215 (1954).Google Scholar
  63. 3.
    D. F. Lawden, The Determination of Minimal Orbits. J. Brit. Interplan. Soc. 11, 216 (1952).Google Scholar
  64. 4.
    B. H. Paiewonsky, Transfer Between Vehicles in Circular Orbits. Jet Propulsion 28, 121 (1958).Google Scholar
  65. 5.
    W. Schaub, Möglichkeiten des Überganges aus einer Ellipsenbahn in eine Kreisbahn und umgekehrt, Teil II (Possibilities of Transfer from an Elliptical Trajectory into a Circular Orbit and Vice Versa). Weltraumfahrt 3, 106 (1952).Google Scholar
  66. 6.
    K. Schütte, Die Bahnbestimmung aus dem Vektor der Bahngeschwindigkeit und der Einfluß einer Änderung desselben auf die Bahnelemente (The Determination of Trajectory Elements from the Velocity Vector and the Influence of a Change of this Vector on the Trajectory Elements). Proceedings, IV International Astronautical Congress, Zürich 1953, p. 89.Google Scholar
  67. 1.
    L. Blitzer, M. Weisfield and A. D. Wheelon, Perturbations of a Satellite’s Orbit Due to the Earth’s Oblateness. J. Appl. Physics 27, 1141 (1956).zbMATHGoogle Scholar
  68. 2.
    L. Blitzer and A. D. Wheelon, Oblateness Perturbations of Elliptical Satellite Orbits. J. Appl. Physics 28, 279 (1957).Google Scholar
  69. 3.
    L. Blitzer, Effect of Earth’s Oblateness on Satellite Period. Jet Propulsion 27, 405 (1957).Google Scholar
  70. 4.
    L. Blitzer, Apsidal Motion of an IGY Satellite Orbit. J. Appl. Physics 28, 1362 (1957).zbMATHGoogle Scholar
  71. 5.
    D. Brouwer, The Motion of a Particle with Negligible Mass under the Gravitational Attraction of a Spheroid. Astronom. J. 51, 223 (1946).MathSciNetGoogle Scholar
  72. 6.
    J. de Nike, The Effect of the Earth’s Oblateness and Atmosphere on a Satellite Orbit, in: Earth Satellites as Research Vehicles. J. Franklin Institute 262, 69 (1956).Google Scholar
  73. 7.
    G. Fosdick and M. Hewitt, Effect of the Earth’s Oblateness and Atmosphere on a Satellite Orbit. Martin Co. Rep. No. ER-8262, 41 (1956).Google Scholar
  74. 8.
    B. Garfinkel, On the Motion of a Satellite of an Oblate Planet. Aberdeen Proving Ground, Rep. No. 1018, 33 (1957).Google Scholar
  75. 9.
    B. E. Kalensher, Equations of Motion of a Missile and a Satellite for an Oblate-Spheroidal Rotating Earth. Jet Propulsion Laboratory, Memo 20–142, 36 (1957).Google Scholar
  76. 10.
    D. G. King-Hele and D. M. C. Gilmore, The Effect of the Earth’s Oblateness on the Orbit of a Near Satellite. Royal Aircraft Establishment Technical Note No. GW 475, 40 (1957).Google Scholar
  77. 11.
    H. G. L. Krause, Die säkularen Störungen einer Außenstationsbahn (The Secular Perturbations in the Orbit of an Artificial Satellite). Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 162.Google Scholar
  78. 12.
    H. G. L. Krause, Die säkularen und periodischen Störungen der Bahn eines künstlichen Satelliten (Secular and Periodic Perturbations on Satellite Orbits). Proceedings, VII International Astronautical Congress, Rome 1956, p. 523.Google Scholar
  79. 13.
    J. A. O’Keefe and C. D. Batchlor, Perturbations of a Close Satellite by the Equatorial Ellipticity of the Earth. Astronom. J. 62, 183 (1957).Google Scholar
  80. 14.
    R. E. Roberson, Orbital Behaviour of Earth Satellites II — Orbits about an Oblate Spheroid. J. Franklin Institute 263, 269 (1957).MathSciNetGoogle Scholar
  81. 15.
    J. L. Sedwick, Jr., Interpretations of Observed Perturbations on a Minimal Earth Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 44. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  82. 16.
    L. Spitzer, Perturbations of a Satellite. J. Brit. Interplan. Soc. 9, 131 (1950).Google Scholar
  83. 17.
    G. P. Taratynova, O Dvizhenii Iskusstvennogo Sputnika V Netsentral’nom Pole Tiagoteniia Zemli Pri Nalichii Soprotivleniia Atmosfery (Method for Orbit Calculations with Perturbations and Derivations of Equation of Motion of a Satellite in the Excentric Gravity Field). Usp. Fiz. Nauk, No. 1a, 51 (1957).Google Scholar
  84. 18.
    I. M. Yatsunskii, O Vliianii Geofizicheskikh Faktorov na Dvishenie Sputnika (Effect of Geophysical Factors upon the Motion of an Artificial Satellite). Usp. Fiz. Nauk, No. 1a, 59 (1957).Google Scholar
  85. 1.
    J. A. Fejer, Life-Time of an Artificial Satellite. Nature 180, 1413 (1957).Google Scholar
  86. 2.
    I. G. Henry, Lifetimes of Artificial Satellites of the Earth. Jet Propulsion 27, 21 (1957).Google Scholar
  87. 3.
    R. Jastrow and C. A. Pearse, Atmospheric Drag on the Satellite. J. Geophysic. Res. 62, 413 (1957).Google Scholar
  88. 4.
    H. B. Ketchum, The Orbit Lifetimes of the U. S. Artificial Satellites. Proceedings, III Annual Meeting American Astronautical Society, p. 31 (1956).Google Scholar
  89. 5.
    R. R. Newton, Lifetimes of Artificial Satellites. Jet Propulsion 28, 331 (1958).Google Scholar
  90. 6.
    T. R. F. Nonweiler, Perturbation of Elliptic Orbits by Atmospheric Contact. J. Brit. Interplan. Soc. 16, 368 (1958).Google Scholar
  91. 7.
    D. E. Okhotsimskii, T. M. Eneev and G. P. Taratynova, Opredelenie Vremeni Sushchestvovaniia Iskusstvennogo Sputnika Zemli I Issledovanie Vekovykh Vozmushchenii Ego Orbity (Development of Method for Lifetime Determinations for Elliptic Orbits with Secular Disturbances; Tables and Diagrams). Usp. Fiz. Nauk, No. 1a, 33 (1957).Google Scholar
  92. 8.
    N. V. Petersen, Lifetimes of Satellites in Near-Circular and Elliptic Orbits, Jet Propulsion 26, 341 (1956).Google Scholar
  93. 9.
    N. V. Petersen, Factors Affecting the Lifetime of Earth Satellites. Aero Digest 73. No. 7, 74 (1956).Google Scholar
  94. 10.
    N. V. Petersen, Summary of Proposed Methods for Determining Satellite Lifetimes. Proceedings, VII International Astronautical Congress, Rome 1956, p. 789.Google Scholar
  95. 11.
    R. E. Roberson, Effect of Air Drag on Elliptic Satellite Orbits. Amer. Rocket Soc. Preprint No. 466-57 (1957); Jet Propulsion 28, 90 (1958).Google Scholar
  96. 12.
    J. M. C. Scott, Estimating the Life of a Satellite. Nature 180, 1467 (1957).Google Scholar
  97. 13.
    G. P. Taratynova, O Dvizhenii Iskusstvennogo Sputnika V Netsentral’nom Pole Tiagoteniia Zemli Pri Nalichii Soprotivleniia Atmosfery (Method for Orbit Calculations with Perturbations and Derivations of Equation of Motion of a Satellite in the Eccentric Gravity Field). Usp. Fiz. Nauk, No. 1a, 51 (1957).Google Scholar

Descent Trajectories

  1. 1.
    H. J. Allen and A. J. Eggers, A Study of the Motion and Aerodynamic Heating of Missiles Entering the Earth Atmosphere at High Supersonic Speeds. National Advisory Committee for Aeronautics Technical Note No. 4047, 61 (1957).Google Scholar
  2. 2.
    H. J. Allen, Motion of a Ballistic Missile Angularly Misaligned with the Flight Path upon Entering the Atmosphere and its Effect upon Aerodynamic Heating. Aerodynamic Loads and Missile Distance, National Advisory Committee for Aeronautics Technical Note No. 4048, 66 (1957).Google Scholar
  3. 3.
    H. J. Allen, Hypersonic Flight and the Re-Entry Problem. J. Aeronaut. Sci. 25, 217 (1958).Google Scholar
  4. 4.
    J. S. Butz, Jr., Sphere, Glider Feasible for Re-Entry. Aviat. Week 65, 16 Dec. 1957, p. 50.Google Scholar
  5. 5.
    A. J. Eggers, Performance of Long Range Hypervelocity Vehicles. Jet Propulsion 27, 1147 (1957).Google Scholar
  6. 6.
    A. J. Eggers, Jr., H. J. Allen and S. E. Neice, A Comparative Analysis of the Performance of Long Range Hypersonic Vehicles. National Advisory Committee for Aeronautics Technical Note No. 4046 (1957).Google Scholar
  7. 7.
    K. A. Ehricke, On the Descent of Winged Orbital Vehicles. Astronaut. Acta 1, 137 (1955).Google Scholar
  8. 8.
    K. A. Ehricke, On the Mechanics of Descent to a Celestial Body. Amer. Rocket Soc. Preprint No. 146-54, 13 (1954).Google Scholar
  9. 9.
    K. A. Ehricke and H. Pence, Re-Entry of Spherical Bodies into the Atmosphere at Very High Speeds. Amer. Rocket Soc. Preprint No. 428-57, 18 (1957).Google Scholar
  10. 10.
    A. Ferri, L. Feldman and W. Daskin, The Use of Lift for Re-Entry from Satellite Trajectories. Jet Propulsion 27, 1184 (1957).Google Scholar
  11. 11.
    C. Gazley, Jr., Entry into a Planetary Atmosphere. Rand Rep. No. P-955A, 51 (1957)Google Scholar
  12. 12.
    L. Gold, Aspects of High-Energy Ballistics. J. Franklin Institute 263, 301 (1957).MathSciNetGoogle Scholar
  13. 13.
    F. G. Gravalos, A Method of Integrating the Equations of Motion of a Body Entering an Arbitrary Atmosphere with an Automatic Error Analysis. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 156.Google Scholar
  14. 14.
    I. G. Henry, Lifetimes of Artificial Satellites of the Earth. Jet Propulsion 27, 21 (1957).Google Scholar
  15. 15.
    A. T. Hodges, The Drag Coefficient of Very High Velocity Spheres. J. Aeronaut. Sci. 24, 755 (1957).Google Scholar
  16. 16.
    F. Hoelker, Satellite Re-Entry-Flight Mechanical Discussion. Army Ballistic Missile Agency, Aeroballistics Laboratory, Rep. No. DA-TN, No. 82, 47 (1958).Google Scholar
  17. 17.
    R. Jastrow and C. A. Pearse, Will Satellites be Short-Lived? J. Geophysic. Res. 62, 413 (1957).Google Scholar
  18. 18.
    H. J. Kaeppeler and M. E. Kübler, Die Rückkehr von geflügelten Geräten von Außenstationsbahnen (The Return of Winged Vehicles from Satellite Orbits). Proceedings, V International Astronautical Congress, Innsbruck 1954, p. 120.Google Scholar
  19. 19.
    H. J. Kaeppeler, Über eine simultane analytische Integration der Bewegungsgleichungen eines geflügelten Gerätes im Überschallgleitflug (On the Simultaneous Analytical Integration of the Equations of Motion of a Winged Vehicle in Supersonic Glide). Astronaut. Acta 1, 166 (1955).MathSciNetGoogle Scholar
  20. 20.
    H. B. Ketchum, The Orbit Lifetimes of the U. S. Artificial Satellites. Proceedings, III Annual Meeting American Astronautical Society, p. 31 (1956).Google Scholar
  21. 21.
    D. G. King-Hele, The Descent of an Earth Satellite Through the Upper Atmosphere. J. Brit. Interplan. Soc. 15, 314 (1956).Google Scholar
  22. 22.
    R. D. Linnell, Vertical Re-Entry into the Earth’s Atmosphere for Both Light and Heavy Bodies. Jet Propulsion 28, 329 (1958).Google Scholar
  23. 23.
    V. C. Liu, On the Drag of a Sphere at Extremely High Speeds. J. Appl. Physics 29, 194 (1958).zbMATHGoogle Scholar
  24. 24.
    N. V. Petersen, Lifetimes of Satellites in Near-Circular and Elliptic Orbits. Jet Propulsion 26, 341 (1956).Google Scholar
  25. 25.
    N. V. Petersen, Summary of Proposed Methods for Determining Satellite Lifetimes. Proceedings, VII International Astronautical Congress, Rome 1956, p. 789.Google Scholar
  26. 26.
    R. E. Roberson, Effect of Air Drag on Elliptic Satellite Orbits. Amer. Rocket Soc. Preprint No. 466-57 (1957); Jet Propulsion 28, 90 (1958).Google Scholar
  27. 27.
    R. D. Turnacliff and J. P. Hartnett, Generalized Trajectories for Free-Falling Bodies of High Drag. Amer. Rocket Soc. Preprint No. 543-57, 15 (1957).Google Scholar
  28. 28.
    L. G. Vargo, Criteria for Orbital Entry. Jet Propulsion 28, 54 (1958).Google Scholar
  29. 1.
    D. N. Buell, Re-Entry Structures, Thermal Stresses and Limit Designs. Amer. Rocket Soc. Preprint No. 606-58 (1958).Google Scholar
  30. 2.
    G. A. Crocco, The Crucial Problem in Astronautics Recovery of Multistage Vehicles. Jet Propulsion 24, 313 (1954).Google Scholar
  31. 3.
    R. Cushman, Next Satellite Problem: Data Descent. Aviat. Week 14 May 1956, p. 53.Google Scholar
  32. 4.
    K. A. Ehricke, Aero-Thermodynamics of Descending Orbital Vehicles. Astronaut. Acta 2, 1 (1956).Google Scholar
  33. 5.
    K. A. Ehricke and H. A. Pence, Recovery Characteristics of Recoverable Spherical Satellites, Satelloides and Lunar Vehicles. Convair Rep. No. AZP-001 (1957).Google Scholar
  34. 6.
    M. Finston, Aerothermal Problems, in Orbital and Satellite Vehicles I. Massachusetts Institute of Technology (1957).Google Scholar
  35. 7.
    C. Gazley, Jr. and D. J. Masson, A Recoverable Scientific Satellite. Rand Rep. No. RM-1844, ASTIA No. AD-112406 (1956).Google Scholar
  36. 8.
    C. Gazley, Jr. and D. J. Masson, Recovery of a Circum-Lunar Instrument Carrier. Amer. Rocket Soc. Preprint No. 488-57, 22 (1957).Google Scholar
  37. 9.
    K. Hipp, Methods for Recovery of Guided Missiles. USAF Trans. No. F-TS-3087-RE, 35 (1948).Google Scholar
  38. 10.
    R. Hoglund and J. Thale, Recovery from a Satellite Orbit. Amer. Rocket Soc. Preprint No. 650-58, 19 (1958).Google Scholar
  39. 11.
    N. H. Kemp and F. R. Riddel, Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere. Jet Propulsion 27, 132 (1957).Google Scholar
  40. 12.
    T. W. Knacke, High Altitude Parachute Recovery, in: C. S. White and O. O. Benson (ed.), Physics and Medicine of the Upper Atmosphere, p. 447. Albuquerque: University of New Mexico Press, 1952.Google Scholar
  41. 13.
    D. J. Masson, Skin Temperature Variation During Re-Entry of Scientific Satellite. Rand Rep. No. RM-1693, 8 (1956).Google Scholar
  42. 14.
    R. T. Patterson, Vertical Recovery. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 285.Google Scholar
  43. 15.
    N. V. Petersen, Recovery Techniques for Manned Earth Satellites. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 300.Google Scholar
  44. 16.
    R. W. Porter, Recovery of Data in Physical Form, in Earth Satellites as Research Vehicles. J. Franklin Institute 262, 103 (1956).Google Scholar
  45. 17.
    A. L. Ruff, S. W. Lin and F. Frank, Aerodynamic Heating of Parachutes. Contract: 33(616)-3572, Task No. 73201, ASTIA No. AD-118587, Cornell University (1957).Google Scholar
  46. 18.
    K. R. Stehling, The Recovery of a Satellite Vehicle. Amer. Rocket Soc. Preprint No. 280-55 (1955); Jet Propulsion 26, 390 (1956).Google Scholar
  47. 19.
    C. S. White and O. O. Benson (ed.), Physics and Medicine of the Upper Atmosphere. Albuquerque: University of New Mexico Press, 1952.Google Scholar
  48. 1.
    M. C. Adams and R. F. Probstein, On the Validity of Continuum Theory for Satellite and Hypersonic Flight Problems at High Altitudes. Jet Propulsion 28, 86 (1958).Google Scholar
  49. 2.
    I. E. Beckwith and J. J. Gallagher, Heat Transfer and Recovery Temperatures on a Sphere with Laminar, Transitional and Turbulent Boundary Layers at Mach Nos. 2.00 and 4.15, National Advisory Committee for Aeronautics Technical Note No. 4125, 59 (1957).Google Scholar
  50. 3.
    J. W. Bond, Jr., Plasma Physics and Hypersonic Flight. Jet Propulsion 26, 228 (1958).Google Scholar
  51. 4.
    R. W. Detra, N. H. Kemp and F. R. Riddell, Addendum to Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere. Jet Propulsion 27, 1256 (1957).Google Scholar
  52. 5.
    M. Devienne, Temperature Reached by a Missile Moving in the Upper Atmosphere. Fusées 2, 43 (1957). (In French.)Google Scholar
  53. 6.
    K. A. Ehricke, Aero-Thermodynamics of Descending Orbital Vehicles. Astronaut. Acta 2, 1 (1956).Google Scholar
  54. 7.
    M. Finston, Aerothermal Problems, in Orbital and Satellite Vehicles I. Massachusetts Institute of Technology (1957).Google Scholar
  55. 8.
    C. Gazley, Jr., Deceleration and Heating of a Body Entering a Planetary Atmosphere from Space. Rand Rep. No. P-955, 51 (1955).Google Scholar
  56. 9.
    C. Gazley, Jr., Entry into a Planetary Atmosphere. Rand Rep. No. P-955A, 51 (1957).Google Scholar
  57. 10.
    N. H. Kemp and F. R. Riddel, Heat Transfer to Satellite Vehicles Re-Entering the Atmosphere. Jet Propulsion 27, 132 (1957).Google Scholar
  58. 11.
    L. Lees, Aerodynamic Solutions of the Manned and Unmanned Re-Entry Problem. Astronautics Symposium, Air Force Office of Scientific Research (1957).Google Scholar
  59. 12.
    D. J. Masson, Skin Temperature Variation During Re-Entry of Scientific Satellite. Rand Rep. No. RM-1693, 8 (1956).Google Scholar
  60. 13.
    D. J. Masson and C. Gazley, Jr., Surface Protection and Cooling Systems for High-Speed Flight. Aeronaut. Engng. Rev. 15, No. 11, 46 (1956).Google Scholar
  61. 14.
    T. Nonweiler, Aerodynamic Heating at High Speeds. J. Brit. Interplan. Soc. 10, 160 (1951).Google Scholar
  62. 15.
    T. Nonweiler, Descent from Satellite Orbits Using Aerodynamic Braking. J. Brit. Interplan. Soc. 10, 258 (1951).Google Scholar
  63. 16.
    T. Nonweiler, Problems of Missiles Entering the Atmosphere. J. Brit. Interplan. Soc. 10, 26 (1951).Google Scholar
  64. 17.
    T. Nonweiler, Skin Heating During Re-Entry of Satellite Vehicles to the Atmosphere. Proceedings, VII International Astronautical Congress, Rome 1956, p. 841.Google Scholar
  65. 18.
    T. Nonweiler, Skin Heating During Re-Entry of Satellite Vehicles to the Atmosphere. J. Brit. Interplan. Soc. 16, 10 (1957).Google Scholar
  66. 19.
    R. T. Patterson, Vertical Recovery. Proceedings, VIII International Astro-nautical Congress, Barcelona 1957, p. 285.Google Scholar
  67. 20.
    N. V. Petersen, Recovery Techniques for Manned Earth Satellites. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 300.Google Scholar
  68. 21.
    A. L. Ruoff, S. W. Lin and F. Frank, Aerodynamic Heating of Parachutes. Quarterly Progress Rep. No. 3, ASTIA No. AD-118587, Cornell University, 1957.Google Scholar
  69. 22.
    R. M. Thomas and F. L. Whipple, Astroballistic Heat Transfer. J. Aeronaut. Sci. 18, 636 (1951).Google Scholar

Orbital Carrier Vehicles and Systems (General)

  1. 1.
    C. T. Aubry, Droppable Stages May Boost Rockets to Earth Circling Orbits. Soc. Automotive Engineers J. 60, No. 9, 18 (1952).Google Scholar
  2. 2.
    B. Bergqvist, An Engineering Approach to a Minimum Weight Design of Orbital Ferry Vehicles. Proceedings, VII International Astronautical Congress, Rome 1956, p. 859.Google Scholar
  3. 3.
    W. von Braun, Das Marsprojekt. Frankfurt/Main: Umschau-Verlag, 1952; The Mars Project, p. 91. Urbana: University of Illinois Press, 1953.Google Scholar
  4. 4.
    C. C. Brock, Space Flight in the Undersea. Amer. Rocket Soc. Preprint No. 540-57, 4 (1957).Google Scholar
  5. 5.
    J. S. Butz, Jr., Sphere, Glider Feasible for Re-Entry. Aviat. Week 65, 16 Dec. 1957, p. 50.Google Scholar
  6. 6.
    G. L. Christian, Scientists Disagree on Man’s Space Role. Aviat. Week 65, 16 Dec. 1957, p. 61.Google Scholar
  7. 7.
    J. De Nike, J. Jensen and M. Stoiko, Space Dynamics Technique Hinges on Propulsion Systems. Aviat. Age 27, No. 7, 26 (1957).Google Scholar
  8. 8.
    H. L. Dryden, Steps into Space. Astronautics 3, No. 6, 41 (1958).Google Scholar
  9. 9.
    K. A. Ehricke, Analysis of Orbital Systems. Proceedings, V International Astro-nautical Congress, Innsbruck 1954, p. 18.Google Scholar
  10. 10.
    S. A. Gordon, Research for High Speed Aircraft. Battelle Techn. Rev. 6, No. 8, 3 (1957).Google Scholar
  11. 11.
    G. W. Hoover, Approaches to the Problem of Space Vehicles. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-29 (1958).Google Scholar
  12. 12.
    G. W. Hoover, Approach to the Problem of Space Flight Experimentation. Amer. Rocket Soc. Preprint No. 539-57, 5 (1957).Google Scholar
  13. 13.
    H. H. Koelle, Optimization Consideration for Orbital Payload Capabilities. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 20.Google Scholar
  14. 14.
    H. H. Koelle, Über eine Näherungsmethode zur Berechnung von Kreisbahnraketen (On an Approximation Method for the Calculation of Orbital Carriers). Raketentechnik und Raumfahrtforschung 2, 8 (1958).Google Scholar
  15. 15.
    W. Ley, The Satellite Rocket. Techn. Rev. 52, 93 (1949).Google Scholar
  16. 16.
    F. I. Ordway III and R. C. Wakeford, America’s Surface-to-Surface Missile Arsenal. Spaceflight 1, 176 (1957).Google Scholar
  17. 17.
    F. I. Ordway III, Manned Rocket Aircraft. Missiles and Rockets 2, No. 11, 71 (1957).Google Scholar
  18. 18.
    B. H. Paiewonsky, Transfer Between Vehicles in Circular Orbits. USAF Wright Air Development Center Technical Note No. 57-267, ASTIA No. AD-130916, 9, (1957).Google Scholar
  19. 19.
    D. C. Romick, R. A. Belfiglio and F. B. Sandgren, Recoverable Boosters are Studied to Cut Manned Space Flight Cost. Missiles and Rockets 3, No. 4, 95 (1958).Google Scholar
  20. 20.
    R. W. Rosen and R. B. Snodgrass, Margin for Error. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 60.Google Scholar
  21. 21.
    E. Sänger, Entwicklungsstand 1957 der unbemannten Flugkörper, Überschall-Fluggeräte und Raumfahrzeuge (1957 State of Development of Unmanned Guided Missiles, Supersonic Airplanes and Space Vehicles). Rep. No. 12, Forschungsinstitut für Physik der Strahlantriebe, Stuttgart, 141 (1957).Google Scholar
  22. 22.
    P. E. Sandorf, Vehicle Performance and Preliminary Design, in Orbital and Satellite Vehicles II. Massachusetts Institute of Technology (1957) 8.Google Scholar
  23. 23.
    R. A. Smith, Establishing Contact between Orbiting Vehicles. J. Brit. Interplan. Soc. 10, 295 (1951).Google Scholar
  24. 24.
    R. C. Truax, We Can’t Conquer Space with Missiles. Astronautics 3, No. 6, 20 (1958).Google Scholar

Theory of Multistage Rocket Vehicles

  1. 1.
    A. Africano, The Rocket Research of Dr. R. H. Goddard. J. Amer. Rocket Soc. 17, No. 71, 28 (1947).Google Scholar
  2. 2.
    B. Bergqvist, An Engineering Approach to a Minimum Weight Design of Orbital Ferry Vehicles. Proceedings, VII International Astronautical Congress, Rome 1956, p. 859.Google Scholar
  3. 3.
    B. Bergqvist, The Weight of Minimum Cost Orbital Ferry Vehicles. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 53.Google Scholar
  4. 4.
    P. Blanc, Le Calcul des Fusées d’Etages (The Calculation of Step Rockets). Mém. Artillerie Française 26, 705 (1952).MathSciNetGoogle Scholar
  5. 5.
    A. V. Cleaver, The Calculation of Take-Off Mass. J. Brit. Interplan. Soc. 9, 5 (1950).Google Scholar
  6. 6.
    A. V. Cleaver, Mass Ratios. J. Brit. Interplan. Soc. 8, 173 (1949).Google Scholar
  7. 7.
    G. A. Crocco, Le Ravitaillement dans l’Espace et le Problème des Polistades. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 152.Google Scholar
  8. 8.
    R. Engel, Bemerkungen zur Frage der Stufenraketen (Remarks on the Problem of Step Rockets). Proceedings, VII International Astronautical Congress, Rome 1956, p. 115.Google Scholar
  9. 9.
    R. Engel, Leistungsnomogramm für Stufenraketen (Performance Nomogram for Step Rockets). Gesellschaft für Weltraumforschung Research Rep. No. 6 (1950).Google Scholar
  10. 10.
    M. Goldsmith, On the Optimization of Two-Stage Rockets. Jet Propulsion 27, 415 (1957).Google Scholar
  11. 11.
    H. H. Hall and E. D. Zambelli, On the Optimization of Multistage Rockets. Jet Propulsion 28, 463 (1958).Google Scholar
  12. 12.
    H. H. Koelle, Der Beweis der Möglichkeit der Weltraumfahrt (The Proof of the Possibility of Spaceflight). Gesellschaft für Weltraumforschung Research Rep. No. 7 (1950).Google Scholar
  13. 13.
    H. H. Koelle, Determination of the Minimum Take-Off Weight of Large Rockets. Rocketscience 6, No. 2, 31 (1952).Google Scholar
  14. 14.
    H. H. Koelle, Graphisches Verfahren zur Abschätzung der optimalen Konstruktionsgrundwerte von Raumfahrzeugen (Graphical Method for Estimating Optimum Design Parameters of Space Vehicles). Weltraumfahrt 3, 39 (1952).Google Scholar
  15. 15.
    H. H. Koelle, Symbole und Definitionen für die Berechnung von Stufenraketen (Symbols and Definitions for the Calculation of Step Rockets). Raketentechnik und Raumfahrtforschung 1, 35 (1957).Google Scholar
  16. 16.
    H. H. Koelle, Verfahren zur Bestimmung der minimalen Startgewichte und der günstigsten Konstruktionsgrundwerte von Raumfahrzeugen (Method for the Determination of Minimum Weights and Optimum Design Parameters of Space Vehicles). Gesellschaft für Weltraumforschung Research Rep. No. 5 (1950).Google Scholar
  17. 17.
    H. G. L. Krause, Allgemeine Theorie der Stufenraketen (General Theory of Step Rockets). Weltraumfahrt 4, 52 (1953).Google Scholar
  18. 18.
    G. Leitmann, Optimum Payload-Ratio Relation for Multiple-Stage Rockets. Amer. J. Physics 26, 28 (1958).Google Scholar
  19. 19.
    F. J. Malina and M. Summerfield, The Problem of Escape from the Earth by Rocket. J. Inst. Aeronaut. Sci. 14, 471 (1947).Google Scholar
  20. 20.
    I. Michelson, Ultimate Design of High Altitude Sounding Rockets. Jet Propulsion 27, 1107 (1957).Google Scholar
  21. 21.
    G. v. Pirquet, Zur Nomenklatur der Gewichtswerte von Stufenraketen (On the Nomenclature of Weights of Step Rockets). Proceedings, V International Astronautical Congress, Innsbruck 1954, p. 162.Google Scholar
  22. 22.
    I. Sänger-Bredt, Allgemeine Darstellung optimaler Verhältnisse bei lotrecht im Schwerefeld aufsteigenden Raketen von beliebiger Stufenzahl (General Presentation of Relationships of Vertical Ascending Rockets with an Arbitrary Number of Stages). VDI-Forschungsheft No. 437, 26 (1953).Google Scholar
  23. 23.
    J. Schmidtmayer, Step Rockets. Letectvi 25, 542 (1949).Google Scholar
  24. 24.
    E. E. H. Schurmann, Optimum Staging Technique for Multistaged Rocket Vehicles. Jet Propulsion 27, 863 (1957).Google Scholar
  25. 25.
    M. Subotowicz, The Optimization of the n Step Rocket with Different Construction Parameters and Propellant Specific Impulses in Each Stage. Jet Propulsion 28, 460 (1958).Google Scholar
  26. 26.
    R. TenDyke, A Method to Determine Step Weights of Rockets to Minimize Initial Gross Weight. The Ramo-Wooldridge Corporation, Rep. No. GM-TR-112, 20 (1957).Google Scholar
  27. 27.
    Z. A. Typalodos, Incremental Step Rockets. Office of Ordnance Research, U.S. Army Rep. No. OORR 57-5, p. 31 (1957).Google Scholar
  28. 28.
    M. Vertregt, Calculation of Step Rockets. J. Brit. Interplan. Soc. 14, 20 (1955).Google Scholar
  29. 29.
    L. Weisbord, A Generalized Optimization Procedure for N-Staged Missiles. Jet Propulsion 28, 164 (1958).Google Scholar
  30. 30.
    M. L. Williams, The Calculation of Fuel Distribution in Step Rockets. J. Brit. Interplan. Soc. 16, 211 (1957).Google Scholar

Component Design for Orbital Carrier Vehicles

  1. 1.
    D. N. Buell, Re-Entry Structures, Thermal Stresses and Limit Design. Amer. Rocket Soc. Preprint No. 606-58 (1958).Google Scholar
  2. 2.
    J. S. Butz, Jr., Orbital Re-Entry Will Intensify Demands on Structures. Aviat. Week 21 Apr. 1958, p. 50Google Scholar
  3. 3.
    R. A. Cornog and F. L. van der Wal, The Optimum Proportions of Rocket Components. Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 74.Google Scholar
  4. 4.
    K. M. Fuechsel, High-Speed Gliding Vehicles. Astronautics 3, No. 8, 34 (1958).Google Scholar
  5. 5.
    C. L. Johnson and F. A. Cleveland, Design of Air Frames for Nuclear Power. Aeronaut. Engng. Rev. 16, No. 6, 48 (1957).Google Scholar
  6. 1.
    Anonymous, Theoretical Characteristics of Several Liquid Propellant Systems. Rand Rep. No. RA-15024 (1947).Google Scholar
  7. 2.
    L. M. Bagnall, Some Data and Comments Concerning the Working Fluid Nuclear Rocket. Amer. Rocket Soc. Preprint No. 592-58 (1958).Google Scholar
  8. 3.
    E. Bergaust, How Good are Free Radicals. Missiles and Rockets 3, No. 3, 78 (1958).Google Scholar
  9. 4.
    A. V. Bolgarskii and V. K. Shchukin, Rabochie Protsessy v Zhidkostnoreaktivnykh Dvigatelyakh (Working Processes in Liquid Rocket Engines), p. 424. Moscow: Oborongiz, 1953.Google Scholar
  10. 5.
    R. W. Bussard and R. D. Delauer, Nuclear Rocket Propulsion. New York: McGraw Hill Book Co., 1958.Google Scholar
  11. 6.
    J. S. Butz, Jr., Magnetohydrodynamics: Hope for Space. Aviat. Week 68, 12 May 1958, p. 48.Google Scholar
  12. 7.
    J. S. Butz, Jr., Basic Factors Complicate Plasma Work. Aviat. Week 68, 2 June 1958, p. 36.Google Scholar
  13. 8.
    J. S. Butz, Jr., Controlled Fusion Studies Open Space Engine Field. Aviat. Week 68, 19 May 1958., p. 50.Google Scholar
  14. 9.
    A. Charwat, High Speed Propulsion Schemes: An Analytical Comparison. Amer. Rocket Soc. Preprint No. 602-58 (1958).Google Scholar
  15. 10.
    N. G. Chernyshev, Khimiya Raketnykh Topliv (Chemistry of Rocket Fuels), p. 352. Moscow and Leningrad: Gosenergoizdat, 1948.Google Scholar
  16. 11.
    D. B. Cross and J. Jensen, A Survey of Propulsion and Space Dynamics. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-1 (1958)Google Scholar
  17. 12.
    J. M. Cumming, Application of Rocket Engines to American Aircraft. Amer. Rocket Soc. Preprint No. 583-58 (1958).Google Scholar
  18. 13.
    J. de Nike, J. Jensen and M. Stoiko, Space Dynamics Technique Hinges on Propulsion Systems. Aviat. Age 27, No. 7, 26 (1957).Google Scholar
  19. 14.
    R. B. Dillaway, Propulsion Systems for Space Flight. Aeronaut. Engng. Rev. 17, No. 4, 42 (1958).Google Scholar
  20. 15.
    B. R. Felix, R. J. Bohl and R. Matulenko, Dynamic Analysis of a Nuclear Rocket Engine System. Amer. Rocket Soc. Preprint No. 593-58 (1958).Google Scholar
  21. 16.
    A. J. Gale, Exotic Propulsion Methods, in Orbital and Satellite Vehicles I. Massachusetts Institute of Technology (1957).Google Scholar
  22. 17.
    M. Goldsmith, The Optimization of Nozzle Aero Ratio for Rockets Operating in a Vacuum. Rand Rep. No. RM-1718, ASTIA No. AD-117482 (1956).Google Scholar
  23. 18.
    L. Green, Jr. and J. M. Carter, Performance Calculations for Hybrid Nuclear Rocket Propulsion Systems. Amer. Rocket Soc. Preprint No. 595-58 (1958).Google Scholar
  24. 19.
    H. H. Koelle, Der Einfluß der Triebwerksdaten auf die Flugleistungen (The Influence of Engine Parameters on Flight Performance). Weltraumfahrt 4, 68 (1953).Google Scholar
  25. 20.
    H. H. Koelle, Zur Frage des optimalen Brennkammerdruckes bei Raketentriebwerken (On the Optimum Combustion Pressure for Rocket Engines). Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 47.Google Scholar
  26. 21.
    R. B. Ormsby, Jr., Airborne Nuclear Propulsion System—Design Considerations. Aeronaut. Engng. Rev. 17, No. 20 (1958)Google Scholar
  27. 22.
    D. E. Perry, High Energy Liquid Fuels Promising. Missiles and Rockets 3, 14 July 1958, p. 3.Google Scholar
  28. 23.
    J. Pressman, Implications of a Recent Rocket Experiment on the Use of Atmospheric Atomic Oxygen for High Altitude Propulsion Systems. Proceedings, VII International Astronautical Congress, Rome 1956, p. 699.Google Scholar
  29. 24.
    E. L. Resler and W. R. Sears, The Prospects for Magneto-Aero-Dynamics. J. Aeronaut. Sci. 25, 235 (1958).zbMATHMathSciNetGoogle Scholar
  30. 25.
    H. W. Ritchey, Solid Propellants and the Conquest of Space. Astronautics 3, No. 1, 39 (1958).MathSciNetGoogle Scholar
  31. 26.
    M. H. Rosenblum, W. T. Rinehart and T. L. Thompson, Rocket Propulsion with Nuclear Energy. Amer. Rocket Soc. Preprint No. 559-57, p. 27 (1957).Google Scholar
  32. 27.
    P. Roundtree, Propulsion Techniques. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-8 (1958).Google Scholar
  33. 28.
    L. Seren, Promising Nuclear Powerplants. Aviat. Age 28, 42 (1957).Google Scholar
  34. 29.
    G. B. Sinyarev and M. V. Dobrovol’skii, Zhidkostnye Raketnye Dvigateli Teoriya i Proektirovanie (Liquid Rocket Engines, Theory and Design), p. 488. Moscow: Oborongiz, 1955.Google Scholar
  35. 30.
    E. T. B. Smith, Solid Propellant Rocket Motors. J. Brit. Interplan. Soc. 16, 198 (1957).Google Scholar
  36. 31.
    B. N. Smith and T. F. McGrath, A Development Approach for Nuclear Rocket Engines. Amer. Rocket Soc. Preprint No. 594-58 (1958).Google Scholar
  37. 32.
    G. P. Sutton, Ein Vergleich möglicher Antriebssysteme für Raumfahrzeuge (Comparison of Possible Propulsion Systems for Space Vehicles). Raketentechnik und Raumfahrtforschung 1, 73 (1957).Google Scholar
  38. 33.
    G. P. Sutton, Proposed Study of Space Propulsion Feasibility. Rocketdyne Rep. No. R-647P, 12 (1957).Google Scholar
  39. 34.
    G. P. Sutton, Propulsion Systems Evaluation. Missiles and Rockets 2, No. 9, 123 (1957).Google Scholar
  40. 35.
    G. C. Szego and E. A. Mickle, Free Radicals as High Energy Propellants. Amer. Rocket Soc. Preprint No. 525-57, 11 (1957).Google Scholar
  41. 36.
    H. C. Thacher, Jr. and J. A. Bierlein, Free Radicals as Fuels. Wright Air Development Command Technical Note 56-538, ASTIA No. AD-118101, 25 (1957)Google Scholar
  42. 37.
    J. F. Tormey, Energy Limitations of Liquid Rocket Propellants. Aircraft Engng., No. 7, 248 (1957).Google Scholar
  43. 38.
    C. J. Wang and G. W. Anthony, Potential Application of Nuclear Energy to Space Vehicle Propulsion. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-37 (1958).Google Scholar
  44. 39.
    F. Winterberg, Kernenergie für Raketentriebwerke (Nuclear Energy for Rocket Engines). Weltraumfahrt 9, 8 (1958).Google Scholar
  45. 1.
    Anonymous, AGARD Second Guided Missile Seminar Guidance and Control. AGARD Rep. No. UG 630 N81. 1a, 391 (1956).Google Scholar
  46. 2.
    R. G. Brown, Outside-in Gimbaling Used in Thor. Missiles and Rockets 3, No. 5, 113 (1958).Google Scholar
  47. 3.
    P. A. Castruccio, Navigation and Communication Techniques in Interplanetary Travel. Amer. Rocket Soc. Preprint No. 545-57, 22 (1957).Google Scholar
  48. 4.
    P. A. Castruccio, Guidance and Control in Space. Missiles and Rockets 3, No. 4, 124 (1958).Google Scholar
  49. 5.
    J. P. Day, Television Applied to Instrumentation. Amer. Rocket Soc. Preprint No. 587-58 (1958).Google Scholar
  50. 6.
    D. B. Duncan, Analysis of an Inertial Guidance System. Jet Propulsion 28, 111 (1958).Google Scholar
  51. 7.
    W. H. Foy, Jr., Steering of an Ascent Rocket for Maximum Cut-Off Velocity. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-14 (1958).Google Scholar
  52. 8.
    W. E. Frye, Fundamentals of Inertial Guidance and Navigation. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-9 (1958).Google Scholar
  53. 9.
    L. Grohe and J. Kirk, Instrumentation Components for Orbital and Satellite Vehicles, in Orbital and Satellite Vehicles II. Massachusetts Institute of Technology (1957).Google Scholar
  54. 10.
    D. Hochman and J. P. Taylor, Feasibility Study of Television Telemetry Systems. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-25 (1958).Google Scholar
  55. 11.
    R. B. Horsfall, Star Sensors for Automatic Navigation. Aviat. Age 29, 150 (1958).Google Scholar
  56. 12.
    J. P. Jagy, The Air-Bearing Gyro Stabilization Problem. Missiles and Rockets 3, No. 2, 84 (1958).Google Scholar
  57. 13.
    C. L. Keller, Satellite Ascent Vehicle Guidance Requirements. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-11 (1958).Google Scholar
  58. 14.
    L. Lawrence, Jr., ASTRO-An Artificial Celestical Navigation System, in Earth Satellites as Research Vehicles. J. Franklin Institute 262, 89 (1956).Google Scholar
  59. 15.
    A. E. Maine and E. Wall, Power Packages for Medium Sized Missiles. Missiles and Rockets 3, No. 2, 115 (1958).Google Scholar
  60. 16.
    D. R. Merkin, Giroskopicheskie Sistemy (Gyroscopic Systems), p. 300. Moscow: Gostekhizdat, 1956.Google Scholar
  61. 17.
    W. L. Morris and R. C. Kaehler, Synthesis of Human-Automatic Control Systems for High Performance Vehicles. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-20 (1958).Google Scholar
  62. 18.
    F. Müller, Systematik der Lenkverfahren (Guidance Classification). Raketentechnik und Raumfahrtforschung 2, 38 (1958).Google Scholar
  63. 19.
    F. K. Mueller, The New Look in Gimbal Systems. Missiles and Rockets 3, No. 3, 199 (1958).Google Scholar
  64. 20.
    C. Mundo, Inertial Aids for Space Travel. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-12 (1958).Google Scholar
  65. 21.
    P. J. Newman, Inertial Navigation and Space Flight. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-13 (1958).Google Scholar
  66. 22.
    R. M. Nolan, Telemetry Key to Missile Operation. Missiles and Rockets 3, No. 6, 67 (1958).Google Scholar
  67. 23.
    R. M. Nolan, Details of Jupiter-C Guidance System Revealed. Missiles and Rockets 3, No. 3, 183 (1958).Google Scholar
  68. 24.
    A. M. Petterson, R. F. Propagation in Interplanetary Communications. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-24 (1958).Google Scholar
  69. 25.
    H. E. Prew, Data Links in Space Exploration, their Nature, Applications and Limitations. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-26 (1958).Google Scholar
  70. 26.
    H. E. Prew, Space Exploration — The New Challenge to the Electronics Industry. Proceedings, III Annual Meeting American Astronautical Society, p. 17 (1956).Google Scholar
  71. 27.
    R. E. Roberson, Optical Determination of Orientation and Position Near a Planet. Amer. Rocket Soc. Preprint No. 643-58, 6 (1958).Google Scholar
  72. 28.
    W. T. Russel, Inertial Guidance for Rocket-Propelled Missiles. Jet Propulsion 28, 17 (1958).Google Scholar
  73. 29.
    D. Sonnabend, Measurement of Velocity in Space. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-27 (1958).Google Scholar
  74. 30.
    H. P. Steier, Space Ship Telemetry. Missiles and Rockets 3, No. 2, 105 (1958).Google Scholar
  75. 31.
    H. P. Steier, What Guides the Vanguard? Missiles and Rockets 1, No. 2, 70 (1956).Google Scholar
  76. 32.
    J. A. Webb, Interplanetary Communications. Astronautics 3, 29 (1956).Google Scholar
  77. 33.
    W. Wrigley, Guidance and Control, in Orbital and Satellite Vehicles II. Massachusetts Institute of Technology (1957).Google Scholar

Design Studies of Orbital Carrier Vehicles

  1. 1.
    Anonymous, Orbital Research and Test Vehicle. Convair Rep. No. 2P—120-A (1955).Google Scholar
  2. 2.
    N. L. Baker, Lockheed Offers Satellite and Moon Rockets. Missiles and Rockets 2, No. 11, 116 (1957).Google Scholar
  3. 3.
    A. E. Dixon, K. W. Gatland and A. M. Kunesch, Fabrication of the Orbital Vehicle. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 125.Google Scholar
  4. 4.
    K. A. Ehricke, Establishment of Large Satellites by Means of Small Orbital Carriers. Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 111.Google Scholar
  5. 5.
    K. A. Ehricke, A New Supply System for Satellite Orbits. Jet Propulsion 24, 302 (1954).Google Scholar
  6. 6.
    K. A. Ehricke, The Satelloid. Astronaut. Acta 2, 63 (1956).Google Scholar
  7. 7.
    K. W. Gatland, A. M. Kunesch and A. E. Dixon, Fabrication of the Orbital Vehicle. J. Brit. Interplan. Soc. 12, 274 (1953).Google Scholar
  8. 8.
    K. W. Gatland, A. M. Kunesch and A. E. Dixon, Minimum Satellite Vehicles. J. Brit. Interplan. Soc. 10, 287 (1951).Google Scholar
  9. 9.
    K. W. Gatland, A. M. Kunesch and A. E. Dixon, Orbital Rockets. J. Brit. Interplan. Soc. 10, 97 (1951).Google Scholar
  10. 10.
    K. W. Gatland, Rocket in Circular Orbits. J. Brit. Interplan. Soc. 8, 52 (1949).Google Scholar
  11. 11.
    K. W. Gatland and A. M. Kunesch, Space Travel, p. 94. London: Allan Wingate Publishers Ltd., 1953.Google Scholar
  12. 12.
    L. J. Grant, A Suggested Design Project on an Orbit Rocket. J. Spaceflight 3, 1 (1957).Google Scholar
  13. 13.
    H. Hoeppner and H. H. Koelle, Die optimale Lastrakete zur Außenstation in 1669 km Höhe (The Optimum Cargo Rocket to a Satellite at 1669 km Altitude). Gesellschaft für Weltraumforschung Research Rep. No. 7 (1951).Google Scholar
  14. 14.
    H. Hoeppner, Die Satellitenrakete 1952 (The Satellite-Rocket 1952). Proceedings, III International Astronautical Congress, Stuttgart 1952, p. 97.Google Scholar
  15. 15.
    H. Kühme, Aerodynamische Untersuchungen zum Start, Rückkehr und Landung der optimalen Lastrakete (Aerodynamic Investigations on the Take-Off, Return and Landing of the Optimum Cargo Rocket). Gesellschaft für Weltraumforschung Research Rep. No. 4 (1951).Google Scholar
  16. 16.
    H. Oberth, Menschen im Weltraum (Men in Space), p. 42. Düsseldorf: ECON-Verlag, 1954.Google Scholar
  17. 17.
    D. C. Romick, Preliminary Engineering Study of a Satellite Station Concept Affording Immediate Service with Simultaneous Steady Evolution and Growth. Amer. Rocket Soc. Preprint No. 274-55, 17 (1955).Google Scholar
  18. 18.
    D. C. Romick, R. E. Knight and S. Black, Meteor, Jr., a Preliminary Design Investigation of a Minimum Sized Ferry Rocket Vehicle of the Meteor Concept. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 340.Google Scholar
  19. 19.
    D. C. Romick, R. E. Knight and T. M. van Pelt, A Preliminary Design Study of a Three Stage Satellite Ferry Rocket Vehicle with Piloted Recoverable Stages. Amer. Rocket Soc. Preprint No. 186-54, 41 (1954).Google Scholar

Data of Manufactured Orbital Carriers

  1. 1.
    Anonymous, Vanguard Instrumentation. Missiles and Rockets 2, No. 1, 66 (1957).Google Scholar
  2. 2.
    Anonymous, Entwicklungsstand der Vanguard-Rakete (Development Status of the Vanguard Rocket). Raketentechnik und Raumfahrtforschung 1, 79 (1957).Google Scholar
  3. 3.
    Anonymous, Vanguard Designers Detail Second Stage. Aviat. Week 68, 5 May 1958, p. 68.Google Scholar
  4. 4.
    Anonymous, Transistor Inverters Power Vanguard Rocket. Electronics 30, 203 (1957).Google Scholar
  5. 5.
    Anonymous, Make-Ready for Satellite Launching. Astronautics 3, 28 (1958).Google Scholar
  6. 6.
    Anonymous, Vanguard. Weltraumfahrt 9, 41 (1958).Google Scholar
  7. 7.
    L. Arnowitz, The Vanguard Control System. Astronautics 2, 34 (1957).Google Scholar
  8. 8.
    J. E. Burghardt, Chemical Rocket Propulsion in the Vanguard Satellite Launching Vehicle. Chemical Engng. Progress 53, 86 (1957).Google Scholar
  9. 9.
    M. Caidin, Vanguard, The Story of the Man Made Satellite, p. 288. New York: Dutton Publishing Co., 1957.Google Scholar
  10. 10.
    A. C. Clarke, The Making of a Moon, p. 205. New York: Harper & Brothers Publishing Co., 1957.Google Scholar
  11. 11.
    B. W. Daugherty, Buying for the Earth Satellite. Aero Purchasing 1, 22 (1957).Google Scholar
  12. 12.
    G. H. DeGroat, Building the Space Satellites. Amer. Machinist 101, 101 (1957).Google Scholar
  13. 13.
    N. E. Felt, Jr., The Vanguard Satellite Launching Vehicle. Proceedings, VII International Astronautical Congress, Rome 1956, p. 811.Google Scholar
  14. 14.
    F. R. Furth, Project Vanguard. Aeronaut. Engng. Rev. 15, No. 3, 55 (1956).Google Scholar
  15. 15.
    K. W. Gatland, The Vanguard Project. Spaceflight 1, 15 (1956).Google Scholar
  16. 16.
    P. J. Klass, Vanguard to Use Eight Control Systems. Missile Engng. 1, 24 (1956).Google Scholar
  17. 17.
    L. Michelson, GE’s X-405 Vanguard Engine. Where it is and How it Got There. Missiles and Rockets 3, No. 5, 139 (1958).Google Scholar
  18. 18.
    W. O. Miller, Vanguard-Long Count Down Succeeds. Missiles and Rockets 3, No. 4, 40 (1958).Google Scholar
  19. 19.
    F. I. Ordway, Project Vanguard — Earth Satellite Vehicle Program. Astronaut. Acta 3, 67 (1957).Google Scholar
  20. 20.
    F. W. Phalen, Telemetered Data Checks Vanguard Flight. Electronic Industries and Tele-Tech. 16, 40 (1957).Google Scholar
  21. 21.
    F. G. Sholes, Mechanical Aspects of the Vanguard Flight Control System. Amer. Rocket Soc. Preprint No. 424-57, 8 (1957).Google Scholar
  22. 22.
    K. R. Stehling, Aspects of Vanguard Propulsion. Astronautics 3, 44 (1958).Google Scholar
  23. 23.
    H. P. Steier, What Guides the Vanguard? Missiles and Rockets 1, No. 2, 70 (1956).Google Scholar
  24. 24.
    J. Strong, Project Vanguard. Aeroplane 92, 919 (1957).Google Scholar
  25. 1.
    Anonymous, Army Launches Satellite. Bids for Space. Aviat. Week 68, 28 (1958).Google Scholar
  26. 2.
    Anonymous, U. S. Army’s Jupiter-C Becomes Satellite Carrier. Missiles and Rockets 2, No. 12, 57 (1957).Google Scholar
  27. 3.
    Anonymous, Spin Stabilizing the Jupiter-C. Missiles and Rockets 3, No. 2, 112 (1958).Google Scholar
  28. 4.
    N. L. Baker, Third Explorer Satellite in Orbit Three More Shots Authorized. Missiles and Rockets 3, 4 Aug. 1958, p. 28.Google Scholar
  29. 5.
    R. M. Nolan, Details of Jupiter-C Guidance System Revealed. Missiles and Rockets 3, No. 3, 183 (1958).Google Scholar
  30. 6.
    J. L. Stami, Launching the Explorer Satellites. Space J. 2, 8 (1958).Google Scholar
  31. 1.
    R. Engel and U. T. Boedewadt, Die Satelliten-Trägerrakete (Orbital Carriers Sputnik and Vanguard). Raketentechnik und Raumfahrtforschung 2, 23 (1958).Google Scholar
  32. 2.
    O. Scholze, Die Sowjetischen Raketen und Lenkwaffen mit den Trägerraketen für die Sputniks (The Soviet Rockets and Guided Missiles including the Carrier Rockets of the Sputniks). Flugwelt 10, 88 (1958).Google Scholar
  33. 1.
    M. Caidin, The First Space Ship X-15. Astronautics 3, No. 8, 35 (1958).Google Scholar
  34. 2.
    R. Sweeney, Pilot Outlines Orbital Test Program. Aviat. Week 68, 28 Apr. 1958. 31.Google Scholar

Satellite Vehicles (General)

  1. 1.
    Anonymous, Firing Time of Satellite Launching Vehicle from Cape Canaveral, Florida, As Related to Solar Illumination and Satellite Visibility. Project Vanguard Rep. No. 25, 63 (1958).Google Scholar
  2. 2.
    Anonymous, 1955 Decision Blocked Army Satellite Try. Missiles and Rockets 3, No. 3, 44 (1958).Google Scholar
  3. 3.
    Anonymous, Practical Aspects of Earth Satellites. Engineering 184, 484 (1957).Google Scholar
  4. 4.
    Anonymous, Theory of the Spin of a Conducting Satellite in Non-Equatorial Orbits. Aberdeen Proving Ground Rep. No. 1031 (1957).Google Scholar
  5. 5.
    J. A. Van Allen, The Artificial Satellite as a Research Instrument. Scientific American 195, 41 (1956).Google Scholar
  6. 6.
    E. C. Berkeley, Satellites and Computers and Psychology. Computers and Automation 6, 6 (1957).Google Scholar
  7. 7.
    L. G. de Bey et al., Scientific Objectives and Observing Methods for a Minimum Artificial Earth Satellite. Aberdeen Proving Ground, Ballistic Research Laboratory, Rep. No. 956 (1955).Google Scholar
  8. 8.
    M. T. Bizony and R. Griffin (ed.), The Space Encyclopedia, p. 287. New York: Dutton Publishing Co., 1957.Google Scholar
  9. 9.
    E. Burgess, The Artificial Satellite. Engineer 192, 456 (1951).Google Scholar
  10. 10.
    V. V. Dobronravov, Iskusstvennyi Sputnik Zemli (Artificial Earth Satellite). Kryl’ya Rodiny 7, No. 8, 19 (1956).Google Scholar
  11. 11.
    K. A. Ehricke, Instrumental Satellites and Instrumental Comets. Interavia 11, 960 (1956).Google Scholar
  12. 12.
    R. L. Garthoff, Red War Sputniks in the Work. Missiles and Rockets 3, No. 5, 134 (1958).Google Scholar
  13. 13.
    V. P. Glushko, Stantsiya vne Zemli (Station Beyond the Earth). Nauka i Tekhnika 41, 3 (1926).Google Scholar
  14. 14.
    H. H. Goode, An Analysis of the Space Station. Rocketscience 6, No. 3, 55 (1952).Google Scholar
  15. 15.
    H. Gröttrup, Aus der Arbeit des Deutschen Raketen-Kollektives in der Sowjet-Union (The Work of the German Rocket Team in the Soviet Union). Raketentechnik und Raumfahrtforschung 2, 58 (1958).Google Scholar
  16. 16.
    H. Haber, Space Satellites, Tools of Earth Research. Nat. Geograph. Mag. 109, 487 (1956).Google Scholar
  17. 17.
    J. P. Hagen, The Exploration of Outer Space with an Earth Satellite. Proc. Inst. Radio Engrs. 44, 744 (1956).Google Scholar
  18. 18.
    R. P. Haviland, What the Future Holds for Earth Satellites. Proceedings, III Annual Meeting American Astronautical Society, p. 77 (1956).Google Scholar
  19. 19.
    R. P. Haviland, Can We Build a Station in Space. Flying 44, No. 5, 19 (1949).Google Scholar
  20. 20.
    J. Humphries, Artificial Satellites. Aeronautics 26, 62 (1952).Google Scholar
  21. 21.
    J. Kaplan, Rocket and Satellite Studies During the IGY. Aeronaut. Engng. Rev. 15, No. 4, 64 (1956).Google Scholar
  22. 22.
    J. Kaplan, How Man-Made Satellites Can Affect our Lives. Nat. Geograph. Mag. 112, 791 (1957).Google Scholar
  23. 23.
    S. B. Krammer, Scientist Compares US — Red Satellites. Aviat. Week 68, 26 May 1958, p. 50.Google Scholar
  24. 24.
    A. R. Krull, A History of the Artificial Satellite. Jet Propulsion 26, 369 (1956).Google Scholar
  25. 25.
    B. Lyapunov, Laboratoriya v Kosmose (Laboratory in Space). Tekhnika-Molodezhi 21, No. 8, 33 (1953).Google Scholar
  26. 26.
    B. Lyapunov, Stantsiya vne Zemli (Station Outside the Earth). Zhanip-Sila, No. 9, 19 (1954).Google Scholar
  27. 27.
    H. S. W. Massey and R. L. F. Boyd, Scientific Observations of the Artificial Earth Satellites and their Analyses. Nature 181, 78 (1958).Google Scholar
  28. 28.
    G. Metreveli, Sputnik Zemli (Earth Satellite). Voennye Znaniya 3, 20 (1957).Google Scholar
  29. 29.
    P. Moore, Earth Satellites, p. 157. Vall-Ballou Press, 1956.Google Scholar
  30. 30.
    H. E. Newell, Jr., Some Preparations for the International Geophysical Year Earth Satellite Program. Amer. Geophysic. Union, Trans. 38, 450 (1957).MathSciNetGoogle Scholar
  31. 31.
    H. E. Newell, Jr., The International Geophysical Year Earth Satellite Program. J. Franklin Institute, 262, 3 (1956).Google Scholar
  32. 32.
    H. Oberth, Menschen im Weltraum (Men in Space), p. 80. Düsseldorf: ECON-Verlag, 1954.Google Scholar
  33. 33.
    H. Oberth, Stationen im Weltraum (Stations in Space), in: H. Gartmann (ed.), Baumfahrtforschung, p. 156. München: R. Oldenbourg, 1952.Google Scholar
  34. 34.
    G. I. Pokrovskii, Iskusstvennyi Sputnik Zemli (Artificial Earth Satellite). Izvestiya, 3 (1955).Google Scholar
  35. 35.
    R. W. Porter, Role of the Earth Satellite in Four Important IGY Experiments. Aeronaut. Engng. Rev. 16, No. 5 (1957).Google Scholar
  36. 36.
    M. Ruze, Iskusstvennyi Sputniki Zemli (Artificial Earth Satellites). V Zashchitu Mira 4, 29 (1955).Google Scholar
  37. 37.
    E. Ryabchikov, Sputnik Zemli (Earth Satellite). Ogonek, No. 24, p. 25 (1957).Google Scholar
  38. 38.
    W. Schaub, Die Außenstation als kräftefreier Kreisel (The Satellite as a Gyro without Acting Forces). Weltraumfahrt 2, 103 (1951).Google Scholar
  39. 39.
    W. Schaub, Die Außenstation als schwerer Kreisel (The Satellite as a Heavy Gyro). Weltraumfahrt 2, 121 (1951).Google Scholar
  40. 40.
    W. Schaub, Die Flutkräfte auf der Außenstation (Tidal Forces on the Artificial Satellite). Weltraumfahrt 2, 1 (1951).Google Scholar
  41. 41.
    L. R. Shepherd, The Artificial Satellite. Proceedings, II International Astronautical Congress, London 1951, p. 13.Google Scholar
  42. 42.
    A. A. Shternfeld, Iskusstvennyi Sputnik Zemli (Artificial Earth Satellite), p. 180. Moscow: Gostekhizdat, 1956.Google Scholar
  43. 43.
    A. A. Shternfeld, Orbital’nye Horabli (Orbital Ships). Tekhnika-Molodezhi 23, No. 5, 28 (1955).Google Scholar
  44. 44.
    S. F. Singer, The Artificial Satellite — Past, Present and Future. Interavia 2, 956 (1956).Google Scholar
  45. 45.
    S. F. Singer, Applications and Design Characteristics of Minimum Satellites. Amer. Rocket Soc. Preprint No. 278-55 (1955).Google Scholar
  46. 46.
    S. F. Singer, Design Criteria for Minimum Satellites. Aeronaut. Digest, 36 (1956).Google Scholar
  47. 47.
    S. F. Singer, A Minimum Orbital Instrumented Satellite — Now. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 136.Google Scholar
  48. 48.
    S. F. Singer, The Mouse, A Minimum Orbital Unmanned Satellite of the Earth for Astrophysical Research. Astronautics 2, No. 3, 91 (1955).Google Scholar
  49. 49.
    S. F. Singer, Studies of a Minimum Orbital Unmanned Satellite of the Earth (Mouse). Astronaut. Acta 1, 171 (1955).Google Scholar
  50. 50.
    V. J. Stakutis and J. X. Brennan, Visibility from a Satellite at High Altitudes, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 137. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  51. 51.
    K. P. Stanyukovich, Iskusstvennyi Sputnik Zemli (Artificial Earth Satellite). Krasnaya Zvezda, 3 (1955).Google Scholar
  52. 52.
    G. H. Stine, Earth Satellites and the Race for Space Superiority, p. 191. New York: Ace Books, 1957.Google Scholar
  53. 53.
    L. H. Thomas, The Vulnerability of Satellite Vehicles to Countermeasures. Jet Propulsion 24, 321 (1954).Google Scholar
  54. 54.
    R. Tousey, Optical Problems of the Satellite. J. Opt. Soc. Amer. 47, 261 (1957).Google Scholar
  55. 55.
    N. A. Varvarov, Iskusstvennyi Sputnik Zemli (Artificial Earth Satellite), p. 32. Moscow: Izd. Sovetskaya Rossiya, 1957.Google Scholar
  56. 56.
    D. O. Woodbury, Around the World in 90 Minutes, the Fabulous True Story of the Man Made Moons, p. 248. New York: Harcourt Publishing Co., 1958.Google Scholar

Environmental Conditions for Satellite Vehicles

  1. 1.
    Anonymous, Research on the Study of the Conditions Surrounding a Body Moving at the High Speeds in the Ionosphere. Air Force Office of Scientific Research Rep. No. TR-5624, 39 (1956).Google Scholar
  2. 2.
    L. G. Goff, The Environmental Problem of Space Travel. Amer. Rocket Soc. Preprint No. 541-57, 10 (1957).Google Scholar
  3. 3.
    R. Griffith, W. Norberg and W. G. Stroud, The Environment of an Earth Satellite. Army Signal Corps, Rep. No. TM 1747, 41 (1956).Google Scholar
  4. 4.
    T. C. Helvey, Laboratory Simulation of Space Flight Conditions. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-41 (1958).Google Scholar
  5. 5.
    W. T. Ingram, Environmental Problems Connected with Space Ship Occupancy. Proceedings, III Annual Meeting American Astronautical Society, p. 117 (1956).Google Scholar
  6. 6.
    W. T. Ingram, Orientation of Research Needs Associated with Environment of Closed Spaces. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-17 (1958).Google Scholar
  7. 7.
    A. M. Mayo, Basic Environmental Problems Relating Man and the Aeropause as Visualized by the Aeronautical Engineer, in: C. S. White and O. O. Benson (ed.), Physics and Medicine of the Upper Atmosphere, p. 6. Albuquerque: University of New Mexico Press, 1952.Google Scholar
  8. 8.
    F. Riddell and R. W. Deltra, Returning Alive From Space. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-4 (1958).Google Scholar
  9. 9.
    L. Trilling, The Environment, in Orbital and Satellite Vehicle I. Massachusetts Institute of Technology (1957).Google Scholar
  10. 1.
    Anonymous, Atmosfera Zemli (The Earth Atmosphere), p. 424. Moscow: Goskul’t prosvetizdat, 1953.Google Scholar
  11. 2.
    Anonymous, Charting Physical Properties of the Atmosphere. Missiles and Rockets 3, No. 4, 139 (1958).Google Scholar
  12. 3.
    W. W. Berning, Ionospheric Structure as Determined by a Minimal Artificial Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 253. Ann Arbor: University of Michigan Press, 1Google Scholar
  13. 4.
    T. H. Chubb, H. Friedman and J. Kupperian, A Satellite Experiment to Determine the Distribution of Hydrogen in Space, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 152. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  14. 5.
    F. B. Daniels, Electromagnetic Propagation Studies with a Satellite Vehicle, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 276. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  15. 6.
    B. S. Danilin, V. V. Mikhnevich, A. I. Repnev and E. G. Shvipkowskii, Problems of Measurement of Pressure and Density of the Upper Atmosphere by Means of an Artificial Satellite. Usp. Fiz. Nauk 63, 205 (1957).Google Scholar
  16. 7.
    E. K. Fedorov and G. A. Skuridin, Rakety I Iskusstvennye Sputniki Zemli V Issledovaniiakh Veryhnei Atmosfery (Rockets and Artificial Satellites in Studies of the Upper Atmosphere). Vestnik Akademii Nauk SSSR 27, No. 8, 37 (1957).Google Scholar
  17. 8.
    I. Harris and R. Jastrow, Upper Atmosphere Densities from Minitrack Observations on Sputnik I. Science 127, 471 (1958).Google Scholar
  18. 9.
    L. M. Hartman and R. P. Haviland, A Satellite Propagation Experiment, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 268. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  19. 10.
    G. Hok, H. S. Sicinski and N. W. Spencer, Temperature and Electron-Density Measurements in the Ionosphere by a Langmuir Probe, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 263. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  20. 11.
    L. M. Jones and F. L. Bartman, Satellite Drag and Air-Density Measurements, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 85. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  21. 12.
    G. Leitmann, Determination of Air Density at High Altitude by Means of an Earth Satellite. Amer. J. Physics 25, 115 (1957).Google Scholar
  22. 13.
    R. A. Minzer, and W. S. Ripley, The ARDC Model Atmosphere 1956. Air Research and Development Command Rep. No. TN 56-204, ASTIA No. AD-110233, 201, (1956).Google Scholar
  23. 14.
    V. V. Mikhnevich, Measuring the Pressure in the Upper Atmosphere. Usp. Fiz. Nauk 63, 181 (1957).Google Scholar
  24. 15.
    B. A. Mirtov and V. G. Istomin, Investigation of the Ionic Composition of the Ionized Upper Atmosphere. Usp. Fiz. Nauk 63, 227 (1957).Google Scholar
  25. 16.
    M. Nicolet, High Atmosphere Densities. Science 127, 1320 (1958).Google Scholar
  26. 17.
    W. Pfister, Study of Fine Structure and Irregularities of the Ionosphere with Rockets and Satellites, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 283. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  27. 18.
    R. E. Roberson, Air Density Determination by Observation of a Satellite. Jet Propulsion 28, 330 (1958).Google Scholar
  28. 19.
    H. S. Sicinski, N. W. Spencer and R. L. Bogges, Pressure and Density Measurements through Partial Pressures of Atmospheric Components at Minimum Satellite Altitudes, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 109. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  29. 20.
    S. F. Singer and R. C. Wentworth, A Method for the Determination of the Vertical Ozone Distribution from a Satellite. J. Geophysic. Res. 62, 299 (1957).Google Scholar
  30. 21.
    L. Spitzer, Jr., On the Determination of Air Density from a Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 99. Ann Arbor: University of Michigan Press, 1956Google Scholar
  31. 22.
    T. E. Sterne and G. F. Schilling, Some Preliminary Values of Upper Atmosphere Density from Observations of USSR Satellites. Smithsonian Institution, Astro-physical Observatory Special Rep. No. 3, 10 (1957).Google Scholar
  32. 23.
    M. S. Travers, Air Resistance and Kinetic Theory of Gases at Very High Altitude. Mém. Artillerie Française 30, 167 (1956).Google Scholar
  33. 1.
    K. Buettner, Thermal Aspects of Travel in the Aeropause-Problems of Thermal Radiation, in: C. S. White and O. O. Benson (ed.), Physics and Medicine of the Upper Atmosphere, p. 88. Albuquerque: University of New Mexico Press, 1952.Google Scholar
  34. 2.
    P. R. Gast, Insolation of the Upper Atmosphere and of a Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 73. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  35. 3.
    D. T. Goldman and S. F. Singer, Studies of a Minimum Unmanned Satellite of the Earth (Mouse), Part IV, Radiation Equilibrium and Temperature. Proceedings, VII International Astronautical Congress, Rome 1956, p. 253; Astronaut. Acta 3, 110 (1957).Google Scholar
  36. 4.
    A. R. Hibbs, The Temperature of an Orbiting Missile. Jet Propulsion Laboratory Progress Rep. No. 20-294 (1956).Google Scholar
  37. 5.
    A. G. Karpenko and M. L. Lidov, O Temperaturnom Rezhime Iskusstvennogo Sputnika Zemli (On the Temperature Regime of an Artificial Earth Satellite). Izvestiya Akademii Nauk SSSR, Seriya Geofizicheskaya, No. 4, 527 (1957).Google Scholar
  38. 6.
    J. I. F. King, The Earth Satellite Vehicle as a Stratosphere Temperature Probe. Proceedings, VII International Astronautical Congress, Rome 1956, p. 821.Google Scholar
  39. 7.
    J. I. F. King, The Radiative Heat Transfer of Planet Earth, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 133. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  40. 8.
    D. H. Robey, On the Equilibrium Temperature and Sublimation Rate of Ice in Space. Convair Rep. No. AZP-029 (1957).Google Scholar
  41. 9.
    C. M. Schmidt and A. J. Hanawalt, Skin Temperatures of a Satellite. Jet Propulsion 27, 1079 (1957).Google Scholar
  42. 10.
    R. L. Sternberg, Some Remarks on the Temperature Problem of the Interplanetary Rocket. J. Amer. Rocket Soc. 17, 34 (1947).Google Scholar
  43. 1.
    J. A. Van Allen, The Nature and Intensity of the Cosmic Radiation, in: C. S. White and O. O. Benson (ed.), Physics and Medicine of the Upper Atmosphere, p. 239. Albuquerque: University of New Mexico Press, 1952.Google Scholar
  44. 2.
    J. A. Van Allen, Cosmic Ray Observations in Earth Satellites, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 171. Ann Arbor: University of Michigan Press, 1956Google Scholar
  45. 3.
    J. A. Van Allen, Study of the Arrival of Auroral Radiations, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 188. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  46. 4.
    J. A. Van Allen, G. H. Ludwig, E. C. Ray and C. E. McIlwain, Observation of High Intensity Radiation by Satellites 1958 Alpha and Gamma. State University of Iowa Rep. No. SUI-58-5, 19 (1958).Google Scholar
  47. 5.
    W. H. Benett, Proposed Measurement of Solar Stream Protons, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 194. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  48. 6.
    T. A. Chubb, H. Friedman and J. Kupperian, A Lyman Alpha Experiment for the Vanguard Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 147. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  49. 7.
    S. L. Mandelshtam and A. I. Efremov, Study of Ultra-Violet Short-Wave Solar Radiation. Usp. Fiz. Nauk 63, 163 (1957).Google Scholar
  50. 8.
    H. T. Schaefer, Radiation Dosage from X and Beta-Rays in Flight Through Auroral Displays. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-18 (1958).Google Scholar
  51. 9.
    L. R. Shepherd, The Possibility of Cosmic Ray Hazards in High Altitude and Space Flight, in: L. J. Carter (ed.), Realities of Space Travel, p. 231. London: Putnam Publishing Co., 1957; New York: McGraw Hill Book Co., 1957.Google Scholar
  52. 10.
    D. G. Simons, Biological Effects of Primary Cosmic Radiation. Proceedings, VII International Astronautical Congress, Rome 1956, p. 381.Google Scholar
  53. 11.
    S. N. Vernov, V. L. Ginzburg, L. V. Kurnosova, L. A. Razorionov and M. I. Fradkin, Study of the Primary Cosmic Radiation by Using Artificial Satellites of the Earth. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 464.Google Scholar
  54. 12.
    S. N. Vernov, Y. I. Logachev, A. E. Chudakov and Y. G. Shafer, Study of the Variation of Cosmic Radiation. Usp. Fiz. Nauk 63, 149 (1957).Google Scholar
  55. 13.
    S. N. Vernov, V. L. Ginzburg, L. V. Kurnosova, L. A. Razorenov and M. I. Fradkin, Study of the Composition of Primary Cosmic Radiation. Usp. Fiz. Nauk 63, 131 (1957).Google Scholar
  56. 1.
    J. P. Heppner, Satellite Geomagnetic Measurements, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 234. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  57. 2.
    L. Katz, Geomagnetic Information Potentially Available from a Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 247. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  58. 3.
    H. B. Rosenstock, The Effect of the Earth’s Magnetic Field on the Spin of the Satellite. Astronaut. Acta 3, 215 (1957).MathSciNetGoogle Scholar
  59. 4.
    S. F. Singer, Measurements of the Earth’s Magnetic Field from a Satellite Vehicle, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 215. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  60. 5.
    E. H. Vestine, Exploring the Atmosphere with a Satellite-Borne Magnetometer, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 198. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  61. 6.
    J. P. Vinti, Theory of the Spin of a Conducting Satellite in the Magnetic Field of the Earth. Aberdeen Proving Ground Rep. No. 1020, 70 (1957).Google Scholar
  62. 7.
    J. P. Vinti, Theory of the Spin of a Conducting Satellite in Non-Equatorial Orbits. Aberdeen Proving Ground Rep. No. APG/BRL 1031, 73 (1957).Google Scholar
  63. 1.
    C. S. Beals, Molecules of Gas and Grains of Dust in Interstellar Space. J. Roy. Astronom. Soc., Canada 46, 41 (1952).Google Scholar
  64. 2.
    A. C. Clarke, Meteors as a Danger to Space Flight. J. Brit. Interplan. Soc. 8, 157 (1949).Google Scholar
  65. 3.
    M. Dubin, Interplanetary Matter and the Earth Satellite. Proceedings, VII International Astronautical Congress, Rome 1956, p. 645.Google Scholar
  66. 4.
    M. Dubin, Meteoric Bombardment, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 292. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  67. 5.
    G. Grimminger, Probability that a Meteor will Hit or Penetrate a Body Situated in the Vicinity of the Earth. J. Appl. Physics 19, 947 (1948).Google Scholar
  68. 6.
    J. Gustavson, Meteoric Dust. Jet Propulsion 27, 207 (1957).Google Scholar
  69. 7.
    S. A. Hoenig, Meteoric Dust Erosion Problem and its Effect on the Earth Satellite. Aeronaut. Engng. Rev. 16, No. 7, 37 (1957).Google Scholar
  70. 8.
    M. Kornhauser, Prediction of Cratering by Meteor Impacts. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-33 (1958).Google Scholar
  71. 9.
    H. E. LaGow, Experiments for Measuring Temperature, Meteor Penetration, and Surface Erosion of a Satellite Vehicle, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 68. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  72. 10.
    P. M. Millman, A Size Classification of Meteoric Material Encountered by the Earth. J. Roy. Astronom. Soc., Canada 46, 79 (1952).Google Scholar
  73. 11.
    M. W. Ovenden, Meteor Hazards to Space Stations. J. Brit. Interplan. Soc. 10, 275 (1951).Google Scholar
  74. 12.
    M. W. Ovenden, Meteors and Space Travel. J. Brit. Interplan. Soc. 10, 176 (1951).Google Scholar
  75. 13.
    M. W. Ovenden, The Nature and Distribution of Meteoric Matter. J. Brit. Interplan. Soc. 6, 157 (1947).Google Scholar
  76. 14.
    S. M. Poloskov and T. N. Nazarova, Issledovanie Tverdoi Sostavliaiushchei Mezhplanetnogo Veshchestva s Pomoshch’iu Raket i Iskusstvennykh Sputnikov Zemli (Investigation of the Solid Components of Interplanetary Space by Means of Rockets and Artificial Satellites). Usp. Fiz. Nauk 63, 253 (1957).Google Scholar
  77. 15.
    D. H. Robey, Extraterrestrial Dust. Convair Rep. No. ZP-7-038 (1956).Google Scholar
  78. 16.
    D. H. Robey, Meteoric Dust and Ground Simulation of Impact on Space Vehicles. Convair Rep. No. AZP-020 (1957).Google Scholar
  79. 17.
    S. F. Singer, Measurements of Interplanetary Dust, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 301. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  80. 18.
    S. F. Singer, The Effect of Meteoric Particles on a Satellite. Jet Propulsion 26, 1071 (1956).Google Scholar
  81. 19.
    M. J. Swetnik, Meteoric Abrasion Studies Proposed for Vanguard. J. Astronautics 4, 69 (1957).Google Scholar
  82. 20.
    F. L. Whipple, Meteoric Collision Factor in Space Ship Design. Aviat. Age 16, 25 (1951).Google Scholar
  83. 21.
    F. L. Whipple, Meteoric Phenomena and Meteorites, in: C. S. White, and O. O. Benson (ed.), Physics and Medicine of the Upper Atmosphere, p. 137. Albuquerque: University of New Mexico Press, 1952.Google Scholar
  84. 22.
    F. L. Whipple, The Meteoric Risk to Space Vehicles. Amer. Rocket Soc. Preprint No. 499-57 (1957).Google Scholar
  85. 1.
    Anonymous, Man’s Scientific Role in Space Debated. Aviat. Week 68, 5 May 1958, p. 26.Google Scholar
  86. 2.
    C. C. Adams, Nutrition in Space Flight. Missiles and Rockets 2, No. 11, 105 (1957).Google Scholar
  87. 3.
    N. L. Baker, Air Force Won’t Support Project ADAM. Missiles and Rockets 3, No. 6, 40 (1958).Google Scholar
  88. 4.
    O. O. Benson, Jr., Progress in Space Medicine. Missiles and Rockets 2, No. 11, 108 (1957).Google Scholar
  89. 5.
    C. A. Berry, The Environment of Space in Human Flight. Aeronaut. Engng. Rev. 17, No. 3, 35 (1958).Google Scholar
  90. 6.
    N. J. Bowman, The Food and Atmosphere Control Problem on Space Vessels, in: L. J. Carter (ed.), Realities of Space Travel, p. 275. London: Putnam Publishing Co., 1957; New York: McGraw Hill Book Co., 1957.Google Scholar
  91. 7.
    P. A. Campbell, Aeromedicai and Biological Considerations of Flight Above the Atmosphere, in: L. J. Carter (ed.), Realities of Space Travel, p. 251. London: Putnam Publishing Co., 1957; New York: McGraw Hill Book Co., 1957.Google Scholar
  92. 8.
    D. W. Conover and E. N. Kemp, Criteria for the Selection and Training of Bio-satellite Crews. Amer. Rocket Soc. Preprint No. 639-58, 10 (1958).Google Scholar
  93. 9.
    D. W. Conover, E. G. Aiken and C. M. Whitlock, The Selection and Training of a Bio-Satellite Crew. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-16 (1958).Google Scholar
  94. 10.
    C. A. Dempsey, F. D. Van Wart, J. H. Duddy and J. K. Hockenberry, Long Term Confidement in Space Equivalent Vehicles. Proceedings, III Annual Meeting American Astronautical Society, p. 89 (1956).Google Scholar
  95. 11.
    C. A. Dempsey, F. D. Van Wart, L. Eisen, J. G. Roth, N. K. Morrison and C. Meyers, Research in Human Travel on the Endless Frontier of Time. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-19 (1958).Google Scholar
  96. 12.
    J. G. Gaume, Design of an Algae Culture Chamber Adaptable to a Space Ship Cabin. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-22 (1958).Google Scholar
  97. 13.
    J. G. Gaume, Plants as a Means of Balancing a Closed Ecological System. Proceedings, III Annual Meeting American Astronautical Society, p. 107 (1956).Google Scholar
  98. 14.
    C. F. Gell, E. L. Hays and J. V. Correale, The Navy’s Full-Pressure Suit. Res. Rev. No. 4, 12 (1958).Google Scholar
  99. 15.
    S. J. Gerathewohl, Personal Experiences During Short Periods of Weightlessness Reported by Sixteen Subjects. Proceedings, VII International Astronautical Congress, Rome 1956, p. 313; Astronaut. Acta 2, 203 (1956).Google Scholar
  100. 16.
    S. J. Gerathewohl, Weightlessness. Astronautics 2, No. 11, 32 (1957).Google Scholar
  101. 17.
    L. J. Grant, Jr., The Atmosphere of a Space Ship. J. Spaceflight 8, No. 4, 1 (1956).Google Scholar
  102. 18.
    F. H. Green, Spacecraft Air Conditioning. Aviat. Age 29, No. 5, 174 (1958).Google Scholar
  103. 19.
    J. Gustavson, Synthetic Atmospheres for Space Ships. Astronautics 2, No. 11, 48 (1957).Google Scholar
  104. 20.
    R. R. Hessberg, Jr., Accelerative Forces Associated with Leaving and Re-Entering the Earth’s Gravitational Field. Proceedings, III Annual Meeting American Astronautical Society, p. 95 (1956).Google Scholar
  105. 21.
    G. W. Hoover, A Program for Space Biological Experiments. Amer. Rocket Soc. Preprint No. 640-58, 7 (1958).Google Scholar
  106. 22.
    G. W. Hoover, Human Engineering for Space Vehicles. Missiles and Rockets 2, No. 11, 93 (1957).Google Scholar
  107. 23.
    P. Isakov, Life in Sputnik. Astronautics 3, No. 2, 38 (1958).Google Scholar
  108. 24.
    A. Kahn, Human Factors in Spaceflight. Missiles and Rockets 2, No. 11, 81 (1957).MathSciNetGoogle Scholar
  109. 25.
    E. B. Konecci, Human Factors and Space Cabin Development. Amer. Rocket Soc. Preprint No. 533-57, 30 (1957).Google Scholar
  110. 26.
    D. N. Michael, How to Keep Space Crews Content. Missiles and Rockets 3, No. 4, 110 (1958).Google Scholar
  111. 27.
    G. E. Ruff, E. Z. Levy and V. H. Thaler, Isolation and Confinement in Space-flight. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-21 (1958).Google Scholar
  112. 28.
    H. O. Strughold, Advances in Astro Biology. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-15 (1958).Google Scholar
  113. 29.
    H. O. Strughold, Engineering Aspects of the Physiological Problems of Providing for Man in Space, in Orbital and Satellite Vehicles II. Massachusetts Institute of Technology (1957).Google Scholar
  114. 30.
    H. Strughold, Interrelations of Space Medicine with Other Fields of Science. Aeronaut. Engng. Rev. 17, No. 4, 30 (1958).Google Scholar
  115. 31.
    R. Sweeney, Studies Probe Man’s Function in Space. Aviat. Week 67, 30 Dec. 1957, p. 45.Google Scholar
  116. 32.
    A. J. Zaehringer, Internal Dangers Threat in Space. Missiles and Rockets 3, No. 4, 82 (1958).Google Scholar

Component Design for Satellite Vehicles

  1. 1.
    H. Ketchum, A Preliminary Survey of the Constructural Features of Space Stations. J. Spaceflight 4, No. 8, 1 (1952).Google Scholar
  2. 2.
    N. H. Langton, The Thermal Dissipation of Meteorites by Bumper Screens. Proceedings, V International Astronautical Congress, Innsbruck 1954, p. 72.Google Scholar
  3. 3.
    N. H. Langton, The Mechanical Penetration of Bumper Screens. J. Brit. Inter-plan. Soc. 13, 283 (1954).Google Scholar
  4. 4.
    A. M. Mayo, Space Cabin Design. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-30 (1958).Google Scholar
  5. 5.
    M. J. Swetnik, Meteoric Abrasion Studies Proposed for Vanguard. Proceedings, III Annual Meeting American Astronautical Society, p. 59 (1956).Google Scholar
  6. 1.
    Anonymous, Power Supplies for an Instrument Carrying Vehicle. J. Brit. Inter-plan. Soc. 13, 294 (1954).Google Scholar
  7. 2.
    Anonymous, Development and Design of Solar Power Systems for IGY Earth Satellites. Signal Engineering Laboratories, Sel-Peb Memo No. 57:93, 3 (1957).Google Scholar
  8. 3.
    Anonymous, Progress Report for December 1957 Covering the Development and Design of Solar Power Systems for the IGY Earth Satellite. Signal Engineering Laboratory, Sel-Peb Memo No. 58:24, 3 (1958).Google Scholar
  9. 4.
    W. Berger, Über die Verwendung von Photoelementen in künstlichen Erdsatelliten (On the Use of Photo Electric Cells in Earth Satellite Vehicles). Raketentechnik und Raumfahrtforschung 1, 22 (1957).Google Scholar
  10. 5.
    C. A. Cross, The Fundamental Basis of Power Generation in a Satellite Vehicle. J. Brit. Interplan. Soc. 2, 117 (1952).Google Scholar
  11. 6.
    N. S. Davis, Hydrogen Peroxide as a Source for Oxygen, Water, Heat and Power for Space Travel. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-31 (1958).Google Scholar
  12. 7.
    L. J. Grant, Power Sources for Orbital Rockets. J. Space Flight 3, No. 9, 31 (1951).Google Scholar
  13. 8.
    B. Langenecker, Zum Problem der rationellen thermoelektrischen Stromerzeugung im extraterrestrischen Aufgabenbereich (On the Problem of Rational Thermo-Electric Power Generation in Space). Proceedings, IV International Astronautical Congress, Zürich 1953, p. 181.Google Scholar
  14. 9.
    G. L. Pearson, Conversion of Solar to Electrical Energy. Amer. J. Physics 25, 591 (1957).Google Scholar
  15. 10.
    S. F. Singer, Power Sources for Space Flight. Missiles and Rockets 1, No. 3, 82 (1956).Google Scholar
  16. 11.
    E. Stuhlinger, Control and Power Supply Problems of Instrumented Satellites. Jet Propulsion 26, 364 (1956).Google Scholar
  17. 12.
    V. S. Vavilov, V. M. Malovetskaya, G. N. Galkin and A. P. Landsman, Kremnevye Solnechnye Batarei kak Istochniki Elektricheskogo Nitaniya Iskusstvennykh Sputnikov Zemli (The Silicon Solar Battery as a Source of Energy for Artificial Satellites). Usp. Fiz. Nauk 63, 123 (1957).Google Scholar
  18. 13.
    E. C. White, J. Foley and R. G. Wilkins, Power Supplies and Telemetry for an Instrumented Artificial Satellite. J. Brit. Interplan. Soc. 15, 177 (1956).Google Scholar
  19. 14.
    F. Winterberg, Grundsätzliches zum Wirkungsgrad von Wärmekraftmaschinen und zur Wärmeabgabe durch Strahlung auf der Außenstation (On the Efficiency of Combustion Engines and on the Heat Dissipation by Radiation on Satellites). Weltraumfahrt 4, 75 (1953).Google Scholar
  20. 15.
    H. K. Ziegler, Components for Instrumentation of Satellites, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 55. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  21. 1.
    Anonymous, Instrumentation of an Orbital Research and Test Vehicle. Convair Rep. No. ZP-7-061 (1955).Google Scholar
  22. 2.
    Anonymous, Scientific Satellite — Payload Considerations. Rand Corporation Rep. No. RM-1459, 10 (1955).Google Scholar
  23. 3.
    Anonymous, Instruments for Satellites (Varian Magnetometer). J. Franklin Institute 264, 258 (1957).Google Scholar
  24. 4.
    J. C. Bellamy, Instruments for Upper Atmosphere and Interplanetary Navigation. Navigation 272 (1950).Google Scholar
  25. 5.
    A. L. Bloom and L. E. Johnson, A Magnetometer for the Satellite. Electronic Industries and Tele-Tech 16, 76 (1957).Google Scholar
  26. 6.
    S. Coric, Neon Sign May Mapp Radiation Belt. Missiles and Rockets 2, No. 7, 22 (1957).Google Scholar
  27. 7.
    L. G. de Bey, Systems Design Considerations for Satellite Instrumentation, in: [edJ. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 49. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  28. 8.
    R. L. Easton, The Mark II Minitrack System. U.S. Naval Research Laboratory Rep. No. 5035 (1957).Google Scholar
  29. 9.
    R. L. Easton, Calibration of the Mark II Minitrack Using Radio Stars as Signal Sources. OST 41, 42 (1957).Google Scholar
  30. 10.
    D. A. Findlay, Electronics in the IGY Program. Electronics 29, 138 (1956).Google Scholar
  31. 11.
    H. Friedman, Soviet Satellite Instrumentation. Astronautics 3, No. 2, 32 (1958).Google Scholar
  32. 12.
    H. Friedman, Scientific Instrumentation in IGY Satellites. Electrical Engng. 76, 470 (1957).Google Scholar
  33. 13.
    H. Friedman, The Vanguard Instrument Package. Astronautics 2, No. 7, 66 (1957).Google Scholar
  34. 14.
    K. I. Gringaus and M. K. Zelikhman, Ismerenie Kontsentralsii Polozhitel’nykh Ionov Vdol’orbity Iskusstvennogo Sputnika Zemli (Measurement of the Concentration of Positive Ions Along the Orbit of an Artificial Earth Satellite). Usp. Fiz. Nauk 63, 239 (1957).Google Scholar
  35. 15.
    R. C. Haymes, Cosmic Ray Instrumentation for the IGY Program. Proceedings, III Annual Meeting American Astronautical Society, p. 65 (1956).Google Scholar
  36. 16.
    G. W. Hoover, Instrumentation for Space Vehicles. Amer. Rocket Soc. Preprint No. 157-54, 3 (1954).Google Scholar
  37. 17.
    H. E. Lagow, Instrumenting Unmanned Satellites. Amer. Rocket Soc. Preprint No. 281-55, 6 (1955).Google Scholar
  38. 18.
    G. H. Ludwig and J. A. Van Allen, Instrumentation for a Cosmic Ray Experiment for the Minimal Earth Satellite. J. Astronautics 3, 59 (1956).Google Scholar
  39. 19.
    W. Matthews, Telemetering in Earth Satellites. Electrical Engng. 76, 976 (1957).Google Scholar
  40. 20.
    W. Matthews, Earth Satellite Instrumentation. Electrical Engng. 76, 562 (1957).Google Scholar
  41. 21.
    W. Matthews et al., Cyclops Cores Simplify Earth Satellite Circuits. Electronics 31, 56 (1958).Google Scholar
  42. 22.
    W. Matthews et al., Scientific Telemetry for USNC—IGY. OST 42, 41 (1958).Google Scholar
  43. 23.
    D. G. Mazur, Telemetering and Propagation Problems of Placing the Earth Satellite in its Orbit. Inst. Radio Engrs., Proc. 44, 752 (1956).Google Scholar
  44. 24.
    J. T. Mengel, Ear to the Sky. Astronautics 2, No. 10, 28 (1957).Google Scholar
  45. 25.
    J. T. Mengel, Tracking the Earth Satellite and Data Transmission by Radio. Inst. Radio Engrs., Proc. 44, 755 (1956).Google Scholar
  46. 26.
    J. T. Mengel, Radio System will Track Earth Satellite. I. Soc. Automotive Engrs. 65, 30 (1957).Google Scholar
  47. 27.
    J. T. Mengel, Minitrack System Design Criteria. Electrical Engng. 76, 666 (1957).Google Scholar
  48. 28.
    J. T. Mengel, Minitrack Details: Satellite Tracking Based on Phase Comparison. Aviat. Age 28, No. 3, 98 (1957).Google Scholar
  49. 29.
    M. E. Packard, Miniaturizing Magnetometers. Military Electronics 3, 22 (1957).Google Scholar
  50. 30.
    H. L. Richter, Microlock — A Tracking Receiver for Satellite Communications. Research and Engineering 3, No. 13 (1957).Google Scholar
  51. 31.
    R. W. Rochelle, Earth Satellite Telemetry Coding System. Electrical Engng. 76, 1062 (1957).Google Scholar
  52. 32.
    D. H. Schaefer, Magnetic Core Event Counter for Earth Satellite Memory. Electrical Engng. 77, 52 (1958).Google Scholar
  53. 33.
    J. M. Slater and J. M. Wuerth, Systems-Satellites-Space. Military Electronics 4, 24 (1957).Google Scholar
  54. 34.
    V. J. Stakutis and J. X. Brennan, Visibility from a Satellite at High Altitudes, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 137. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  55. 35.
    K. R. Stehling, Earth Scanning Techniques for a Small Orbital Rocket Vehicle. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 63.Google Scholar
  56. 36.
    W. Strouse, Satellite Eyes to View Earth Weather Conditions. Missiles and Rockets 3, No. 6, 72 (1958).Google Scholar
  57. 37.
    C. S. Warren et al., Transistorized Memory Monitors Earth Satellite. Electronics 31, 66 (1958).Google Scholar
  58. 38.
    R. A. Webster, A Recoverable Emulsion Package for Extra Atmospheric Study of Cosmic Rays. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-32 (1958).Google Scholar
  59. 1.
    J. O. Crum and S. L. Gendler, Satellite Rocket Power Plant. Rand Corporation Rep. No. RA-15027, 110 (1957).Google Scholar
  60. 2.
    W. R. Davis, Determination of an Unique Attitude for an Earth Satellite. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-10 (1958).Google Scholar
  61. 3.
    K. A. Ehricke, Ion Propulsion System for Orbital Stabilization of Satellites. Convair Astronautics Memo No. ASM 2 (1957).Google Scholar
  62. 4.
    N. K. Marshall, Sun Position Indicator. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-34 (1958).Google Scholar
  63. 5.
    R. E. Roberson, Attitude Control of a Satellite Vehicle—An Outline of the Problems. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 317.Google Scholar
  64. 6.
    P. E. Sandorff and J. S. Prigge, Jr., Thermal Control in a Space Vehicle. J. Astronautics 3, 4 (1956).Google Scholar

Design Studies of Satellite Vehicles

  1. 1.
    Anonymous, Manned Space Laboratory Plan Based on Bullet Shaped Capsule. Aviat. Week 68, 5 May 1958, p. 37.Google Scholar
  2. 2.
    Anonymous, NACA Proposes Satellites Capable of Piloted Re-Entry. Aviat. Week 68, 5 May 1958, p. 30.Google Scholar
  3. 3.
    W. von Braun, Multistage Rockets and Artificial Satellites, in: J. P. Marbacher (ed.), Space Medicine, p. 14. Illinois: University of Illinois Press, 1951.Google Scholar
  4. 4.
    E. Clark, Convair Plans Four-Man Space Station. Aviat. Week 68, 28 Apr. 1958, p. 26.Google Scholar
  5. 5.
    C. Gazley, Jr. and D. J. Masson, A Recoverable Scientific Satellite. Rand Corporation Rep. No. RM-1844 (1956).Google Scholar
  6. 6.
    C. Gazley, Jr. and D. J. Masson, A Recoverable Scientific Satellite. Rand Corporation Rep. No. P-958 (1957)Google Scholar
  7. 7.
    R. P. Haviland, The Communication Satellite. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 543; Astronaut. Acta 4, 70 (1958).Google Scholar
  8. 8.
    G. W. Hoover, Sectional Satellites. Missiles and Rockets 2, No. 10, 135 (1957).Google Scholar
  9. 9.
    H. H. Koelle, The Influence of the Design of the Earth Satellite Vehicle on the Overall Cost of the Project. Gesellschaft für Weltraumforschung Research Rep. No. 9 (1951).Google Scholar
  10. 10.
    D. C. Romick, A Manned Earth Satellite Terminal Evolving from Earth to Orbit Ferry Rockets. Proceedings, VII International Astronautical Congress, Rome 1956, p. 335.Google Scholar
  11. 11.
    H. E. Ross, Orbital Bases. J. Brit. Interplan. Soc. 8, 1 (1949).Google Scholar
  12. 12.
    C. Ryan, W. von Braun and W. Ley, Across the Space Frontier. New York: The Viking Press, 1952.Google Scholar
  13. 13.
    S. F. Singer, A Minimum Orbital Instrumented Satellite — Now. Proceedings, IV International Astronautical Congress, Zürich 1953, p. 136.Google Scholar
  14. 14.
    S. F. Singer, The Mouse, A Minimum Orbital Unmanned Satellite of the Earth for Astrophysical Research. J. Astronautics 2, 91 (1955).Google Scholar
  15. 15.
    S. F. Singer, Studies of a Minimum Orbital Unmanned Satellite of the Earth (Mouse). Astronaut. Acta 1, 171 (1955).Google Scholar
  16. 16.
    S. F. Singer, Applications and Design Characteristics of Minimum Satellites. Amer. Rocket Soc. Paper No. 278-55 (1955).Google Scholar
  17. 17.
    S. F. Singer, Design Criteria for Minimum Satellites. Aero Digest, No. 4, 36 (1956).Google Scholar
  18. 18.
    S. F. Singer, The Artificial Satellite. Discovery 17, 140 (1956).Google Scholar
  19. 19.
    F. A. Smith, The Satellite Telescope. J. Brit. Interplan. Soc. 16, 361 (1958).Google Scholar

Data of Manufactured Satellite Vehicles

  1. 1.
    Anonymous, Fabricating Earth Satellites. Welding and Metal Fabrication 25, 433 (1957).Google Scholar
  2. 2.
    D. A. Anderton, Vanguard Depends on Tools and Gages. Aviat. Week 65, 50 (1956).Google Scholar
  3. 3.
    R. C. Baumann, Design, Fabrication, and Testing of the Vanguard Satellite. Amer. Rocket Soc. Preprint No. 427-57, 14 (1957).Google Scholar
  4. 4.
    D. Cox, Men of Project Vanguard. Astronautics 2, No. 10, 32 (1957).Google Scholar
  5. 5.
    V. J. Crouse, Vanguard Instrumentation System. Signal 12, 33 (1957).Google Scholar
  6. 6.
    T. A. Dickinson, Earth Satellite No. 1. Welding and Metal Fabrication 25, 289 (1957).Google Scholar
  7. 7.
    G. W. Grupp, Electroplating is an Important Step in the Construction of a Man-Made Satellite. Metal Finishing 65, 40 (1957).Google Scholar
  8. 8.
    G. H. Hass, The Coatings that Go on the Satellite. Magnesium, No. 8, 4 (1957).Google Scholar
  9. 9.
    H. E. Newell, Jr., The International Geophysical Year Earth Satellite Program, in Earth Satellite as Research Vehicles. J. Franklin Institute 262, 3 (1956).Google Scholar
  10. 10.
    M. W. Rosen, Placing the Satellite in its Orbit. Astronautics 3, No. 3, 61 (1956).Google Scholar
  11. 11.
    R. L. Stedfield, Engineering the Earth Satellite. Machine Design 28, 82 (1956).Google Scholar
  12. 12.
    S. Williams, Support Requirement for the Vanguard Satellite Launching Vehicle. Amer. Rocket Soc. Preprint No. 425-57, 13 (1957).Google Scholar
  13. 1.
    Anonymous, Einige Ergebnisse der amerikanischen Satelliten (Some Results of the American Satellites). Weltraumfahrt 9, 45 (1958).Google Scholar
  14. 2.
    Anonymous, Explorer Nose Cone Temperatures Fall into Normal Earth Ranges. Aviat. Week 68, 24 Mar. 1958, p. 19.Google Scholar
  15. 3.
    Anonymous, Vanguard Gear in Explorer Army’s Globe-Circling Satellite Carries Navy Circuits. Electronics 31, 8 (1958).Google Scholar
  16. 4.
    N. L. Baker, U.S. Satellite Aloft. Missiles and Rockets 3, No. 3, 112 (1958).Google Scholar
  17. 5.
    D. E. Koelle, Der Meß-Satellit Explorer I (1958) (The Instrumented Satellite Explorer I 1958). Raketentechnik und Raumfahrtforschung 2, 62 (1958).Google Scholar
  18. 6.
    C. Lundquist, Spatial Orientation of Explorer Satellites. Space J. 2, No. 2, 15 (1958).Google Scholar
  19. 7.
    F. Pollard, U. S. Satellites (Failure and Success), Artificial Meteors and Project Farside. Spaceflight 1, 231 (1958).Google Scholar
  20. 8.
    C. Tilenius, 1958 Alpha “Explorer”. Weltraumfahrt 9, 5 (1958).Google Scholar
  21. 1.
    Anonymous, Sputnik I and II, Texts of Soviet Announcements October 4 and November 3, 1957. Current History 34, 48 (1958).Google Scholar
  22. 2.
    Anonymous, The New Dimension—The Launching of the Soviet Earth Satellites. Interavia 12, 1229 (1957).Google Scholar
  23. 3.
    Anonymous, Sputnik Rocket Fell in Mongolia. Missiles and Rockets 68, 28 July 1958, p. 82.Google Scholar
  24. 4.
    Anonymous, Research Based on Sputniks I and II Reported by Soviets. Science 127, 1378 (1958).Google Scholar
  25. 5.
    Anonymous, Sputnik II Through Russian Eyes. Astronautics 3, No. 1, 48 (1958).Google Scholar
  26. 6.
    Anonymous, The First Days of Sputnik I. Spaceflight 1, 198 (1958).Google Scholar
  27. 7.
    R. A. Anderson and C. S. L. Keay, New Zealand Visual Observations of the Rocket Accompanying the Russian Artificial Satellite. Astronaut. Acta 3, 227 (1957).Google Scholar
  28. 8.
    S. Beitler, Sputnik III. Astronautics 3, No. 7, 12 (1958).Google Scholar
  29. 9.
    R. R. Brown et al., Radio Observations of the Russian Earth Satellite. Proc. Inst. Radio Engrs. 45, 1552 (1957).Google Scholar
  30. 10.
    E. Clark, Programs for Future Sputniks Detailed by Russian Scientists. Aviat. Week 67, 32 (1957).Google Scholar
  31. 11.
    A. Croome, The International Geophysical Year, Month by Month. Discovery 19, 29 (1958).Google Scholar
  32. 12.
    K. W. Gatland, Russia’s Second Satellite. Spaceflight 1, 204 (1958).Google Scholar
  33. 13.
    I. Hersey, The Meaning of Sputnik. Astronautics 2, No. 11, 22 (1957).Google Scholar
  34. 14.
    D. G. King-Hele, Progress of Sputnik II (1957 B). Nature 181, 738 (1958).Google Scholar
  35. 15.
    D. E. Koelle, Die Meßsatelliten der USA und UdSSR (Scientific Satellites of the USA and USSR). Raketentechnik und Raumfahrtforschung 2, 25 (1958).Google Scholar
  36. 16.
    Mullard Radio Astronomy Observatory, Radio Observations of the Russian Earth Satellite. Nature 181, 879 (1957).Google Scholar
  37. 17.
    H. Neckel, A Photographic Observation of the Satellite 1957 Beta Leaving the Earths Shadow. Nature 181, 257 (1958).Google Scholar
  38. 18.
    H. K. Paetzold, Einige Ergebnisse aus den Beobachtungen der ersten russischen Erdsatelliten (Some Results from the Tracking of the First Russian Earth Satellite). Raketentechnik und Raumfahrtforschung 2, 50 (1958).Google Scholar
  39. 19.
    V. Parfenov and E. Blinova, Instrumentation of Sputnik. J. Instrument Soc. Amer. 4, 572 (1957).Google Scholar
  40. 20.
    A. M. Peterson, Radio and Radar Tracking of the Russian Earth Satellite. Proc. Inst. Radio Engrs. 45, 1553 (1957).Google Scholar
  41. 21.
    V. P. Petrov, Sputnik Not so Secret. Missiles and Rockets 3, No. 3, 83 (1958).Google Scholar
  42. 22.
    D. Reuyl, Orbit Measurements of an Artificial Earth Satellite (Sputnik II) from Photographs taken with a Tracking Ballistic Telescope System. Aberdeen Proving Ground Rep. No. TN-1156 (1957).Google Scholar
  43. 23.
    J. S. Rinehart and G. F. Schilling, Additional Orbit Information for USSR Satellites 1957 Alpha One and Beta One. Smithsonian Institution Special Rep. No. 2 (1957).Google Scholar
  44. 24.
    Royal Aircraft Establishment, Farnborough, Observations on the Orbit of the First Russian Earth Satellite. Nature 180, 937 (1957).Google Scholar
  45. 25.
    E. T. B. Smith, Sputnik I and II. J. Brit. Interplan. Soc. 16, 295 (1958).Google Scholar
  46. 26.
    M. J. Smyth, Photographic Observations of Artificial Earth Satellites. Space-flight 1, 247 (1958).Google Scholar
  47. 27.
    V. Vakhnin, Iskusstvennyi Sputniki Zemli (Artificial Earth Satellites). Radio (Moscow) No. 6, 14 (1957).Google Scholar
  48. 28.
    F. L. Whipple and J. A. Hynek, Observations of Satellite I. Scientific American 197, No. 6, 37 (1957).Google Scholar
  49. 1.
    Anonymous, Work on Pied Piper Accelerated. Aviat. Week 68, 23 June 1958, p. 18.Google Scholar

Use of Satellite Vehicles and Benefits

  1. 1.
    Anonymous, Ionospheric Studies Using Earth Satellites. IGY Bull. 7, 11 (1958).Google Scholar
  2. 2.
    Anonymous, On the Utility of an Artificial Unmanned Earth Satellite. Jet Propulsion 25, 71 (1955).Google Scholar
  3. 3.
    J. A. Van Allen, Scientific Value of the Earth Satellite Program. Inst. Radio Engrs., Proc. 44, 764 (1956).Google Scholar
  4. 4.
    W. A. Baum, A Fundamental Cosmological Experiment for the Artificial Satellite. J. Astronomical Society Pacific 68, 118 (1956).Google Scholar
  5. 5.
    H. E. Canney and F. I. Oedway III, The Uses of Artificial Satellite Vehicles. Astronaut. Acta 2, 147 (1956).Google Scholar
  6. 6.
    A. C. Clarke, Extra Terrestrial Relays. Wireless World, No. 10, 305 (1945).Google Scholar
  7. 7.
    K. A. Ehricke, Astronautical and Space Medical Research with Automatic Satellites, in: Earth Satellites as Research Vehicles. J. Franklin Institute 262, 25 (1956).Google Scholar
  8. 8.
    H. Faust, Aufgaben für Meßsatelliten (Applications for Satellite Vehicles). Weltraumfahrt 8, 9 (1957).Google Scholar
  9. 9.
    L. J. Grant, The Use of the Space-Station for Space Navigation. J. Space Flight 2, 1 (1950).Google Scholar
  10. 10.
    P. R. Haviland, On Applications of the Satellite Yehicle. Jet Propulsion 26, 360 (1956).Google Scholar
  11. 11.
    H. K. Kallmann and W. W. Kellogg, Use of an Artificial Satellite in Upper Air Research. Amer. Meteorol. Soc. 38, 17 (1957).Google Scholar
  12. 12.
    L. Lawrence, Jr., Navigation by Satellites. Missiles and Rockets 1, No. 1, 48 (1956).MathSciNetGoogle Scholar
  13. 13.
    I. M. Levitt, Geodetic Significance of a Minimum Satellite Vehicle. Proceedings, V International Astronautical Congress, Innsbruck 1954, p. 255.Google Scholar
  14. 14.
    S. L. Mandel’shtam and A. I. Efremov, Issledovaniia Korotkovolnovogo Ul’tra-fioletovogo Izlucheniia Solutsa (Investigation of Short Wave Ultra-Violet Solar Radiation). Usp. Fiz. Nauk 63, 163 (1957).Google Scholar
  15. 15.
    W. T. Moore, The Space Station as a Radio Relay. J. Space Flight 1, No. 6, 1 (1949).Google Scholar
  16. 16.
    J. A. O’Keefe, Geodesy Comes of Age with Vanguard. Astronautics 2, No. 8, 71 (1957).Google Scholar
  17. 17.
    M. W. Ovenden, The Astronomical Uses of Small Artificial Satellites. Science Progress 44, 472 (1956).Google Scholar
  18. 18.
    V. Peteow, Ispol’zovannie Iskusstvennogo Sputnika Zemli Dlya Vsemirnogo Televizionnogo Veshaniya (Television of the Future: Utilization of Artificial Satellite for World-Wide Television Broadcasting). Radio (Moscow), No. 6, 28 (1956).Google Scholar
  19. 19.
    W. Proell, The Proper Military Use of the Space Station. J. Space Flight 2, No. 3, 5 (1950).Google Scholar
  20. 20.
    S. F. Singer, Geophysical Research with Artificial Satellites, in: H. E. Landsberg (ed.), Advances in Geophysics, 3, p. 301. New York: Academic Press, 1956.Google Scholar
  21. 21.
    S. F. Singer, Meteorological Measurements from a Minimum Satellite. Trans. Amer. Geophysic. Union 38, 469 (1957).Google Scholar
  22. 22.
    S. F. Singer, Minimum Earth Satellite as Storm Patrols. Sci. Monthly 84, 95 (1957)Google Scholar
  23. 23.
    S. F. Singer, Space Vehicles as Tools for Research in Relativity. Proceedings, III Annual Meeting American Astronautical Society, 121 (1956).Google Scholar
  24. 24.
    L. Spitzer, Jr., Astrophysical Research with an Artificial Satellite, in: Earth Satellites as Research Vehicles. J. Franklin Institute 262, No. 6, 69 (1956).Google Scholar
  25. 25.
    W. G. Stroud and W. Nordberg, Meteorological Measurements from a Satellite Vehicle, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 119. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  26. 26.
    N. A. Varvarov, Televidenie so Sputnika Zemli (Television from an Earth Satellite). Sovetskaya Aviatsiya, No. 171, 2 (1957).Google Scholar
  27. 27.
    H. Wexler, Observing the Weather from a Satellite Vehicle. J. Brit. Interplan. Soc. 13, 269 (1954).Google Scholar
  28. 28.
    H. Wexler, The Satellite and Meteorology. Proceedings, III Annual Meeting American Astronautical Society, p. 5 (1956).Google Scholar
  29. 29.
    F. L. Whipple, Astronomy from the Space Station. J. Brit. Interplan. Soc. 12, 10 (1953).Google Scholar
  30. 30.
    F. L. Whipple, Scientific Value of Artificial Satellites. J. Franklin Institute 262, 95 (1956).Google Scholar

Cost Consideration of Satellite Projects

  1. 1.
    Anonymous, Space Flight: A 2 Billion-a-Year Business by 1962. Aviat. Age 28, 16 (1957).Google Scholar
  2. 2.
    N. L. Baker, Military Rockets Cheaper for Space Exploration. Missiles and Rockets 3, No. 3, 40 (1958).Google Scholar
  3. 3.
    N. J. Brown, The Cost of Interplanetary Cargo Transportation II. J. Space Flight 4, 1 (1952).Google Scholar
  4. 4.
    R. Cornog, Economics of Rocket Propelled Aeroplanes II. Aeronaut. Engng. Rev. 15, 49 (1956).Google Scholar
  5. 5.
    L. J. Grant, Further Studies in the Economics of a Space Station. J. Space Flight 2, 1 (1950).Google Scholar
  6. 6.
    S. Hall, Budgeting for the Space Age. Missiles and Rockets 3, No. 4, 102 (1958).Google Scholar
  7. 7.
    S. M. Johnson, Sequential Production Planning Overtime at Minimum Cost. Rand Rep. No. P-989 (1957).Google Scholar
  8. 8.
    D. Novick, Use of the Learning Curve. Rand Rep. No. P-267, 6 (1951).Google Scholar
  9. 9.
    D. C. Romick, R. A. Belfiglio and F. B. Sandgren, Recoverable Boosters are Studies to Cut Manned Space Flight Cost. Missiles and Rockets 3, No. 4, 95 (1958).Google Scholar
  10. 10.
    E. Sänger, Was kostet Weltraumfahrt (What will Space Flight Require?). Weltraumfahrt 2, 49 (1951).Google Scholar
  11. 11.
    R. Sweeney, Support Items Total 87% of Thor Cost. Aviat, Week 68, 2 June 1958, p. 40.Google Scholar

Schedules for Satellite Projects

  1. 1.
    A. V. Cleaver, A Program for Achieving Interplanetary Flight. J. Brit. Interplan. Soc. 13, 1 (1954).Google Scholar
  2. 2.
    K. A. Ehricke, Ehricke Predicts Space Flight Timetable. Missiles and Rockets 3, No. 4, 64 (1958).Google Scholar
  3. 3.
    I. Hersey et al., Rocket and Satellite Technology in IGY 1982-83. Astronautics 2, No. 3, 17 (1957).Google Scholar
  4. 4.
    H. H. Koelle, Vorschlag für ein realisierbares Raumfahrtprogramm der nächsten 30 Jahre (Proposal for a Realistic Spaceflight Program for the Next 30 Years). Weltraumfahrt 6, 97 (1955).Google Scholar
  5. 5.
    E. Sänger, Forschung zwischen Luftfahrt und Raumfahrt (Research in the Area Between Aeronautics and Astronautics), p. 93. Tittmoning, Obb.: W. Pustet, 1954.Google Scholar

Logistical Aspects of Satellite Projects

  1. 1.
    W. von Braun, Logistic Aspects of Orbital Supply Systems. Amer. Rocket Soc. Preprint No. 185-54, 10 (1954).Google Scholar

Ground Equipment and Organization

  1. 1.
    Anonymous, Feasibility of Observing and Tracking a Small Satellite Object. Varo Manufacturing Co., Rep. No. 1641, 32 (1955).Google Scholar
  2. 2.
    Anonymous, Vanguard’s Center Gets Rehearsal. Electronics 30, 7 (1957).Google Scholar
  3. 3.
    Anonymous, Computing Facility for Project Vanguard. J. Franklin Institute 263, 275 (1957).Google Scholar
  4. 4.
    Anonymous, Satellites Followed with Transparent Earth-Sky Globe. J. Franklin Institute 265, 82 (1958).Google Scholar
  5. 5.
    Anonymous, Radar Antenna Awaits First U. S. Satellite. Missiles and Rockets 3, No. 1, 153 (1958).Google Scholar
  6. 6.
    J. T. Bolljahn, Effects of Satellite Spin on Ground-Received Signal. Stanford Research Institute, Applied Research Center, Technical Rep. No. 6, p. 22 (1957).Google Scholar
  7. 7.
    R. J. Davis, R. C. Wells and F. L. Whipple, On Determining the Orientation of a Cylindrical Artificial Earth Satellite. Astronaut. Acta 3, 231 (1957).Google Scholar
  8. 8.
    G. J. Doundoulakis, An Universal Radio Astronomy System for Radio Telescopes, Space Vehicle Tracking and Scatter Propagation Studies. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-23 (1958).Google Scholar
  9. 9.
    R. L. Easton, Radio Tracking of the Earth Satellite, An Opportunity for Amateur Collaboration. QST 40, 38 (1956).Google Scholar
  10. 10.
    R. L. Easton, Radio Tracking of IGY Satellite: The Mark II Minitrack System. J. Astronautics 4, 31 (1957).Google Scholar
  11. 11.
    R. H. Emmons, Satellite-Tracking Practice in a Planetarium. Sky and Telescope 16, 170 (1957).Google Scholar
  12. 12.
    J. Firor, A Radio Telescope. QST 41, 32 (1957).Google Scholar
  13. 13.
    M. Gunther, Tracking the Man Made Satellite. Radio and TV News 58, 31 (1957).Google Scholar
  14. 14.
    J. P. Hagen, Radio Tracking, Orbit and Communication for the Earth Satellite. Aeronaut. Engng. Rev. 16, No. 5, 62 (1957).Google Scholar
  15. 15.
    R. Hawkes, Camera Ready to Track Soviet Satellite. Aviat. Week 67, 28 Oct. 1957, p. 123.Google Scholar
  16. 16.
    M. J. Hendrie, The Photographic Observation of Artificial Satellites. Spaceflight 1, 267 (1958).Google Scholar
  17. 17.
    D. E. Hudson, Possibility of Visual Tracking of a Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 39. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  18. 18.
    J. Humphries, Observation of Artificial Satellites. J. Brit. Interplan. Soc. 15, 347 (1956).Google Scholar
  19. 19.
    J. T. Kane, Operation Moonwatch. National History 66, 129 (1957).Google Scholar
  20. 20.
    A. Kazantsev, Nablyodeniya za Radiosignalami’s Iskusstvennogo Sputnika Zemli i ikh Nauchnoe Znachenie (Observations of Radio Signals from the Artificial Earth Satellite and their Scientific Significance). Radio (Moscow), No. 6, 17 (1957).Google Scholar
  21. 21.
    E. J. Long, Tracking the Satellite. Nature Mag. 501, 154 (1957).Google Scholar
  22. 22.
    A. C. B. Lovell, Radio Astronomy and the Jodrell Bank Radio Telescope. Radio and TV News 59, 35 (1958).Google Scholar
  23. 23.
    N. D. MacDonald, Computation for an Earth Satellite. Computers and Automation 6, 6 (1957).Google Scholar
  24. 24.
    A. G. Masevich, Visual Observations of the Earth’s Satellite in the USSR. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 483.Google Scholar
  25. 25.
    H. S. W. Massey and R. L. F. Boyd, Scientific Observations of the Artificial Earth Satellites and their Analysis. Nature 181, 78 (1958).Google Scholar
  26. 26.
    J. T. Mengel and P. Herget, Tracking Satellites by Radio. Scientific American 198, No. 1, 23 (1958).Google Scholar
  27. 27.
    H. J. Merrill, Satellite Tracking by Electronic Optical Instrumentation, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 29. Ann Arbor: University of Michigan Press, 1956.Google Scholar
  28. 28.
    R. Merten, Funkverbindung mit der Außenstation (Radio Communication with the Earth Satellite Vehicle), in: R. Merten (ed.), Hochfrequenztechnik und Weltraumfahrt, p. 93. Stuttgart: S. Hirzel, 1951.Google Scholar
  29. 29.
    A. A. Mikhailov, O Nabliudenii Iskusstvennogo Sputnika (On the Observation of the Artificial Satellite). Astron. Zhurn. 34, 313 (1957).Google Scholar
  30. 30.
    E. Rechtin, Satellite Tracking. Amer. Rocket Soc. Preprint No. 649-58, 5 (1958).Google Scholar
  31. 31.
    O. J. Russel, Satellite Observations for Amateurs. Wireless World 63, 579 (1957).Google Scholar
  32. 32.
    O. Rzhiga et al., Nabliodeme za Signalami Iskusstvennie Sputnikov Zemli (Observations of Signals from Artificial Satellites). Radio (Moscow), No. 8, 17 (1957).Google Scholar
  33. 33.
    I. Schmidt, Considerations about Visibility of Satellites for the Unaided Eye. Proceedings, IV Annual Meeting American Astronautical Society, Preprint No. 57-36 (1958).Google Scholar
  34. 34.
    I. Schmidt, Spaces of Potential Visibility of Artificial Satellites for the Unaided Eye. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 373.Google Scholar
  35. 35.
    I. Schmidt, Visibility of Artificial Satellites of the Planet Earth. J. Aviat. Med. 28, 435 (1957).Google Scholar
  36. 36.
    I. Schmidt, Berechnungen zur Sichtbarkeit von Erdtrabanten (Calculations on the Visibility of the Earth Satellites). Weltraumfahrt 8, 104 (1957).Google Scholar
  37. 37.
    C. J. Sletten, F. S. Holt et al., A New Satellite Tracking Antenna. Institute of Radio Engineers, Convention Record No. 244-261 (1957).Google Scholar
  38. 38.
    A. N. Spitz, Project Moon Watch-Visual Tracking of IGY Satellites. Proceedings, III Annual Meeting American Astronautical Society, p. 169 (1956).Google Scholar
  39. 39.
    H. P. Steier, Tracking the IGY Satellites. Missiles and Rockets 1, No. 1, 76 (1956).Google Scholar
  40. 40.
    H. P. Steier, Vanguard Satellite Tracking Camera Developed. Missiles and Rockets 2, No. 1, 64 (1957).Google Scholar
  41. 41.
    R. Tousey, The Visibility of an Earth Satellite. Astronaut. Acta 2, 101 (1956).Google Scholar
  42. 42.
    F. L. Whipple and J. A. Hynek, Optical and Visual Tracking of Artificial Satellites. Proceedings, VIII International Astronautical Congress, Barcelona 1957, p. 429.Google Scholar
  43. 43.
    F. L. Whipple and J. A. Hynek, Research Program Based on the Optical Tracking of Artificial Earth Satellites. Inst. Radio Engrs. 44, 760 (1956).Google Scholar
  44. 44.
    J. B. Zirker, F. L. Whipple and R. J. Davis, Time Available for the Optical Observation of an Earth Satellite, in: J. A. Van Allen (ed.), Scientific Uses of Earth Satellites, p. 23. Ann Arbor: University of Michigan Press, 1956.Google Scholar

Copyright information

© Springer-Verlag Wien 1959

Authors and Affiliations

  • H. H. Koelle
    • 1
  1. 1.United States Army Ballistic Missile AgencyRedstone ArsenalUSA

Personalised recommendations