Advertisement

Some Results from Direct Methods Applied to Optimum Rocket Trajectories

  • Frank D. Faulkner
Chapter

Abstract

Solutions for various problems arising in the study of optimum rocket trajectories are given by direct methods. These methods have the advantage of simplicity in showing both the necessity and sufficiency of the conditions. Emphasis is placed on the interception of a ballistic target with minimum fuel consumption, above the sensible atmosphere, as a typical problem.

Zusammenfassung

Lösungen für verschiedene Probleme, die beim Studium optimaler Raketenbahnen auftreten, werden mittels direkter Methoden erhalten und angegeben. Diese Verfahren haben den Vorzug der Einfachheit bei der Darlegung sowohl der Notwendigkeit wie auch des Hinreichens der Bedingungen. Das Schwergewicht wird auf das Abfangen eines ballistischen Zieles mit minimalem Brennstoffverbrauch oberhalb des praktisch merklichen Bereiches der Atmosphäre gelegt, was eines der typischen Probleme ist.

Résumé

Les solutions de divers problèmes qui se posent dans l’étude de trajectories optimales sont obtenues par des méthodes directes. Elles ont l’avantage de la simplicité quand il s’agit de prouver que les conditions obtenues sont nécessaires et suffisantes. L’accent est placé sur un problème typique: l’interception d’un engin balistique au-dessus de l’atmosphère avec une consommation d’ergols minimum.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. D. Faulkner, Internal Memorandum IMF 7, Aeronautical Research Center, Univ. of Michigan, Aug. 1946.Google Scholar
  2. 2.
    F. D. Faulkner, Homing in a Vacuum with Minimum Fuel Consumption. UMM-18, Aeronautical Research Center, Univ. of Michigan, Feb. 1, 1949.Google Scholar
  3. 3.
    F. D. Faulkner, Solution to the Problem of Homing in a Vacuum with a Point Mass. UMM-19, Aeronautical Research Center, Univ. of Michigan, Feb. 1, 1949.Google Scholar
  4. 4.
    F. D. Faulkner, A Note on Homing and on Craft Trajectories when Drag is a Linear Function of Velocity. Internal Memorandum EMF 10, Aeronautical Research Center, Univ. of Michigan, Feb. 1950.Google Scholar
  5. 5.
    N. Coburg, Optimum Rocket Trajectories. UMM-48, Aeronautical Research Center, Univ. of Michigan, May 1950.Google Scholar
  6. 6.
    F. D. Faulkner, Abstract, The Problem of Oberth. Bull. Amer. Math. Soc. 58, 652 (1952).Google Scholar
  7. 7.
    F. D. Faulkner, A Degenerate Problem of Bolza. Proc. Amer. Math. Soc. 6, 847 (1955).zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    B. D. Fried and J. M. Richardson, Optimum Rocket Trajectories. J. Appl. Physics 27, 955 (1956).zbMATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    F. D. Faulkner, The Problem of Goddard and Optimum Thrust Programming. Proc. 3rd Annual Meeting, Amer. Astronaut. Soc., Dec. 6, 7, 1956, New York, pp. 43-51.Google Scholar
  10. 10.
    D. E. Okhotsimskii and T. M. Eneev, Certain Variational Problems Associated with the Launching of an Artificial Earth Satellite. The Russian Literature of Satellites, Part 1, International Physical Index, Inc., New York, 1958.Google Scholar
  11. 11.
    W. H. Foy, Jr., Steering of an Ascent Rocket for Maximum Cutoff Velocity. Paper No. 14, Proc. 4th Annual Meeting, Amer. Astronaut. Soc., Jan. 29–31, 1958, New York.Google Scholar

Copyright information

© Springer-Verlag Wien 1959

Authors and Affiliations

  • Frank D. Faulkner
    • 1
    • 2
  1. 1.American Astronautical SocietyUSA
  2. 2.Mathematics and MechanicsU.S. Naval Postgraduate SchoolMontereyUSA

Personalised recommendations