Advertisement

General Review of Work in Celestial Mechanics at Moscow University

  • G. N. Duboshin
Chapter

Abstract

This paper is primarily a review of work on the motions of artificial satellites carried out in the Department of Celestial Mechanics of Moscow University during 1957–62. The paper describes the formulation of problems and main results of work in the following areas:
  1. 1)

    Theory of translational rotational motions. Primary attention is devoted to the rotational motion of artificial satellites (Duboshin, Rybakov, Kondurar, Yarov-Yarovoi).

     
  2. 2)

    Construction of intermediate orbits based on averaging of the right-hand sides of two differential equations of motion and on the application of the probability theory (Shchigolev).

     
  3. 3)

    Analytical theory of the motion of artificial earth satellites. Perturbations through the fifth order are taken into account (Orlov).

     
  4. 4)

    An analytical theory of motion of lunar and outer space probes (YarovYarovoi).

     
  5. 5)

    Work on the region of convergence of Hill’s series in the restricted problem of three bodies (Ryabov).

     
  6. 6)

    Construction of an analytical theory of motion of artificial earth satellites subject to the following perturbations: Earth oblateness, triaxiality, atmospheric drag, influence of other planets (Grebenikov, Demin, Aks enov).

     
  7. 7)

    An analytical theory of motion of an artificial satellite in the gravitational field of the earth, based on a generalization of the problem of two fixed centers (Grebenikov, Demin, Aksenov).

     

The paper also mentions activities of scientists working at other institutes but having close working relations with the Department of Celestial Mechanics of the Moscow State University (Magnaradze, Elenevskaya, Reznikovsky, Kondurar, et al.). In conclusion, important results are mentioned which were obtained by mathematicians at the Moscow State University who are engaged in purely mathematical studies of certain problems in celestial mechanics (Arnold, Alexeev, et al.).

Résumé

Ce papier est avant tout une revue des travaux sur le mouvement des satellites artificiels réalisés au département de mécanique céleste de l’Université de Moscou durant la période 1957–62. Le papier décrit la formation des problèmes et les principaux résultats des travaux dans les domaines suivants:
  1. 1)

    Théorie des mouvements orbitaux et de rotation. Une attention spéciale est donnée au mouvement de rotation des satellites artificiels (Duboshin, Rybakov, Kondurar, Yarov-Yarovoi).

     
  2. 2)

    Construction d’orbites intermédiaires basées sur une moyenne du secondes membres des équations différentielles du mouvement et sur l’application de la théorie des probabilités (Shchigolev).

     
  3. 3)

    Théorie analytique du mouvement de satellites artificiels terrestres en tenant compte des perturbations jusqu’au Sème ordre (Orlov).

     
  4. 4)

    Une théorie analytique du mouvement de sondes lunaires et spatiales (Yarov-Yarovoi).

     
  5. 5)

    Travaux dans la région de convergence des séries de Hill pour le problème restreint des trois corps (Ryabov).

     
  6. 6)

    Construction d’une théorie analytique du mouvement de satellites terrestres artificiels sujets aux perturbations suivantes: aplatissement terrestre, triaxialité, traînée, atmosphérique, influence d’autres plané-tes (Grebenikov, Demin, Aksenov).

     
  7. 7)

    Une théorie analytique du mouvement d’un satellite artificiel dans le champs de gravitation de la Terre, basée sur une généralisation du problème de deux centres fixes (Grebenikov, Demin, Aksenov).

     

Le papier mentionne aussi les activités de chercheurs travaillant dans d’autres institutes ayant des rapports étroits avec le département de mécanique céleste de l’Université d’Etat de Moscou (Magnaradze, Elenevskaya, Reznikovsky, Kondurar, etc.). En conclusion on mentionne d’importants résultats obtenus par des mathématiciens de l’Université d’Etat de Moscou s’occupant d’études purement mathématiques de certains problèmes de mécanique céleste (Arnold, Alexeeva, etc.).

абстрактный

Настоящий доклад посвящен главным образом обзору научной работы по теории движения искусственных небесных тел (“астродинамика”), выполненной на кафедре небесной механики Московского Университета за последние пятывт (1957-1962 гг.). В докладе излагаются постановки задач и основные результаты в следующих направлениях:
  1. 1)

    Теория поступательно-вращательного движения небесных тел, в особенности теория вращательного движения искусственных небесных тел (работы Г.Н.Дубошина, А.И.Рыбакова, В.Т.Кондурарь, М.С.Яров-Ярового)

     
  2. 2)

    Проблема построения промежуточных орбит на принципе осреднения правых частей дифференциальных уравнений движения с применением методов теории вероятностей (работы Б.М. Щиголева)

     
  3. 3)

    Аналитическая теория движения спутников Земли в гравитационном поле планеты с учетом возмущений до пятого порядка включительно“(работы А.А.Орлова)

     
  4. 4)

    Аналитическая теория движения космического корабля к Луне и к другим планетам солнечной системы (работы М.С.ЯровЯрового)

     
  5. 5)

    Определение области сходимости рядов Хилла в ограниченной задаче трех тел (работы Ю.А.Рябова)

     
  6. 6)

    Построение аналитической теории движения искусственного спутника Земли с учетом сжатия Земли, трехосности,сопротивления земной атмосферы и возмущений других планет (работы Е.А.Гребеникова, В.Г.Демина, Е.П.Аксенова)

     
  7. 7)

    Построение аналитической теории движения искусственного спутника в гравитационном поле Земли на базе обобщенной задачи двух неподвижных центров (совместная работа Е.А. Гребеникова, В.Г.Демина и Е.П.Аксенова).

     

Кроме того, в докладе отмечаются работы ученых, работаю щих в других институтах и организациях, но поддерживающих тесные научные связи с кафедрой небесной механики МГУ (работы Н.Г.Магнарадзе, Н.Б.Еленовской, П.М.Резниковского, В.Т Кондурарь и др.). В заключение отмечаются важные результаты, полученные математиками МГУ, занимающимися некоторыми чисто математическими проблемами небесной механики (работы В.И.Арнольда, В.М.Алексеева и др.).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Kondurar, V. T., “The problem of the motion of two ellipsoids under the influence of mutual attraction,” Astronomy 12, No. 6 (1936), also in GAIS Works 9 (1939), 21 (1952), 24 (1954).“Special solutions of the general problem of translational rotational motion of a spheroid under the influence of the attraction of a sphere,” Astronomy 36 (1959).Google Scholar
  2. 2).
    Duboshin, G. N., “On the differential equations of the translational rotational motion of mutually attracting solid bodies,” Astronomy 35 (1958). “On the stability of regular motions of artificial bodies,” Astronomy 31 (1959).Google Scholar
  3. 3).
    Duboshin, G. N., “One particular case of the general problem of the translational rotational motion of two bodies,” and “On certain special solutions of the translational rotational motion of two bodies,” GAIS Rep. No. 108 (1960).Google Scholar
  4. 4).
    Duboshin, G. N., “On the rotational motion of artificial celestial bodies,” ITA Bull. 7, No. 7 (1960). “On the integration of differential equations of the rotational motion of artificial celestial bodies,” ITA Bull. 7, No. 10 (1960).Google Scholar
  5. 5).
    Rybakov, A. I., “Numerical investigation of the rotational motion of a celestial body about its center of inertia,” GAIS Rep. No. 112 (1960). “Investigation of a special case of the rotational motion of a material section about its center of inerta,” MGU (Moscow University)Papers No. 3 (1961). “The problem of investigating the translational rotational motion in the system the Earth-Sun-Moon by means of the method of numerical integration,” GAIS Rep. No. 110 (1960).Google Scholar
  6. 6).
    Shchigolev, B. M., “Intermediate orbits in the problem of three bodies,” GAIS Works 24(1954). “On Hill’s intermediate orbit in the problem of three bodies,” GAIS Works 28(1960). “Approximate calculation of an ephimeris in an unperturbed elliptic motion,” MGU Papers No. 4 (1958). “On the approximate calculation of an ephemeris in a limited problem of three bodies,” MGU Papers No. 5 (1958).Google Scholar
  7. 7).
    Orlov, A. A., “On the existence of periodic motions of a material point in the field of gravitation of a spheroid in a critical case,” ITA Bull. 7, No. 7 (1960). “Influence of the spheroidicity of a planet on the motion of its satellites,” GAIS Rep. No. 112 (1961).Google Scholar
  8. 8).
    Yarov-Yarovoi, M. S., “On the decomposition of the force function of the Newtonian attraction of two bodies,” MGU Papers Nos. 5, 6 (1958); Nos. 3, 6 (1959). “On the convergence of series representing the motion of artificial earth satellites,” ITA Bull. 7, No. 7 (1960). “On a rocket’s motion near the moon,” ITA Bull. 7, No. 10 (1960). “On integration of equations of motion of artificial earth satellites by the method of separation of variables,” GAIS Repts. (1962).Google Scholar
  9. 9).
    Ryabov, Y. A., “On the evaluation of the region of applicability of the method of a small parameter in the theory of non-linear variations,” 1, No. 3 (1961). “On the region of the existence of Hill’s periodic solutions in the problem of the moon’s motion,” ITA Bull. No. 6 (1962).Google Scholar
  10. 10).
    Grebenikov, E. A., “On secular perturbations in the theory of motion of artificial earth satellites,” Astronomy 36 (1959). “Analytic theory of the motion of Iapetus,” Astronomy 35, No. 6 (1958). “On the application of Hill’s method for investigating the motion of artificial earth satellites,” ITA Bull. 7, No. 10 (1960).Google Scholar
  11. 11).
    Aksenov, E. P., “On the motion of an artificial satellite in the non-central field of the earth’s gravitation,” ITA Bull. 7, No. 10 (1960). “On the periodic motions of particle in the gravitation field of a revolving body,” MGU Papers No. 5 (1960). “Almost circular orbits of a particle in the gravitation field of a revolving body,” MGU Papers No. 5 (1960).Google Scholar
  12. 12).
    Demin, V. G., “On the orbits of the problem of two fixed centers,” Astronomy 37, No. 6 (1960). “New classes of periodic solutions in a limited circular problem of three bodies,” Astronomy 38, No. 1 (1961).Google Scholar
  13. 13).
    Aksenov, E. O., Grebenikov, E. A. and Derain, V. G., “A general solution of the problem on the motion of an artificial satellite in a normal field of gravitation of the earth,” Artificial Satellites, No. 8. “Qualitative analysis of forms of motion in the problem on the motion of an artificial satellite in a normal field of the earth’s gravitation,” (published in the collection “Artificial Satellites”).Google Scholar

Copyright information

© Springer-Verlag Wien 1964

Authors and Affiliations

  • G. N. Duboshin
    • 1
  1. 1.Moscow UniversityMoscowUSSR

Personalised recommendations