Advertisement

Abstract

The major recent developments in the attitude control of space vehicles are reviewed, with emphasis on the years 1961–2. A brief survey of attitude control methods for existing vehicles and those in prospect for the near future is given. A statement of the current status of studies in the foundation questions of requirements, controlled element dynamics and disturbance torques reveals that several significant problems remain in these areas. A morphology for attitude control system types is developed, and current trends as regards both components and control system techniques are stated and documented. The bulk of the general attitude control literature during the subject period is reviewed within an integrated descriptive framework for the attitude control discipline.

Résumé

Contrale d’attitude dans l’espace. Un aperçu des problèmes courants et de leur évolution. Les principaux développements récents du contr8le de l’attitude des véhicules spatiaux sont passés en revue, particulièrement ceux des années 1961–1962. On donne un bref aperçu des méthodes de contr8le d’attitude de véhicules existants et ceux projetés dans un avenir proche. Un examen de l’état actuel d’avancement des études dans les questions fondamentales des exigences, de la dynamique des éléments contr6lés_ et des couples perturbateurs révèlent qu’il subsiste plusieurs problèmes importants dans ce domaine. Une morphologie des types de systèmes de contr8le d’attitude est développée et les tendances actuelles dans le domaine des constituants aussi bien que des techniques de contrâle sont présentés avec références. L’ensemble général de la littérature sur le contr8le d’attitude durant la période précitée est passé en revue dans un cadre descriptif approprié à la discipline du contr8le d’attitude.

Абстрактный

Управление положением в космическом пространстве - обзор современных проблем и состояния вопроса. Дан обзор основных работ в области управления положением космических ракет сConsultant, Fullerton, Cal. U.S. A. упором на годы 1961–1962. Кратко рассмотрены методы управ-ления положением уже существующих ракет и тех, которые бу-дут созданы в ближайшем будущем. Рассмотрение современного состояния исследований, связанных с анализом основных тре-бований, динамики управляемых элементов и возмущающих мо-ментов показывает, что в этих областях остается несколько важных проблем. Разработаны типы систем управления положе-нием и указаны современные тенденции в их конструировании. Дан обзор основных работ по вопросам управления положением, напечатанных за последние годы.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    Roberson, R. E., “Attitude control of a satellite vehicle - an outline of the problems,” Proceedings of the VIIIthInternational Astronautical Congress, Barcelona 1957 (Springer-Verlag, Wien, 1958), pp. 317339.Google Scholar
  2. 2).
    Roberson, R. E., “Attitude control of satellites and space vehicles,” Advances in Space Sciences (Academic Press, New York, 1960 ),Vol. 2, pp. 351–436.Google Scholar
  3. 3).
    Roberson, R. E., (ed.), “Methods for the control of satellites and space vehicles,” TR60–643, July 31, 1960, Vol.I, “Sensing and actuating methods;” Wright Air Development Div., Vol. 2, “Control systemmechanization and analysis.”Google Scholar
  4. 4).
    DeLisle, J., Hildebrant, B. M. and Petranic, T. D., “Attitude control of space vehicles,” ARS preprint 2114–61, presented at the ARS Space Flight Report to the Nation, New York, October 1961.Google Scholar
  5. 5).
    Haeusserman, W., “Recent advances in attitude control in space,” ARS J. 32, 188–195 (1962).Google Scholar
  6. 6).
    Meisels, M., “Communication satellites - challenge and progress in four microwave systems,” Electronic Design 156–175 (January 18, 1962 ).Google Scholar
  7. 7).
    Hecht, E. and Manger, W. P., “Magnetic attitude control of the Tiros satellites,” AAS paper 62–44, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  8. 8).
    Fischell, R. E., “Magnetic damping of the angular motion of earth satellites,” ARS J. 31, 1210–17 (1961).Google Scholar
  9. 9).
    Satellite test gravity stabilization,“ Aviation Week 34 (November 20, 1961).Google Scholar
  10. 10).
    Discoverer II orbital attitude controlled,“ Aviation Week (April 20, 1959), 26–27.Google Scholar
  11. 11).
    Sirri, N., “Space vehicle attitude control,” JPL TR 34–121, October 1960.Google Scholar
  12. 12).
    Alexander, G., “Nimbus uses wheels, jets for control,” Aviation Week 77, 79 (July 10, 1961 ).Google Scholar
  13. 13).
    Ludwig, G. H. and Scull, W. E., “The orbiting geophysical observatory - new tool for space research,” Astronaut. 7, 24–27, 62–66, 68, 69 (May 1962).Google Scholar
  14. 14).
    Ingram, D. A. and Stern, E., “Design and dynamic testing of an ultra high accuracy satellite stabilization and control system for the NASA orbiting astronomical observatory,” presented at the XIIIth International Astronautical Congress, Varna, Bulgaria, September 1962.Google Scholar
  15. 15).
    Williams, D. D., “Torques and attitudes sensing in spin-stabilized synchronous satellites,” AAS paper 62–43, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  16. 16).
    Goddard Space Flight Center, “Final report on the Tiros I meteorological satellite system,” NASA TR R-131 (1962).Google Scholar
  17. 17).
    Adelson, H. E., “Project ARENTS,” presented at the XIIIth International Astronautical Congress, Varna, Bulgaria, September 1962.Google Scholar
  18. 18).
    Wilson, R. H., Jug. “Exploitation of magnetic torques on satellites,” AAS paper 62–61, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  19. 19).
    Aviation Week 19, 31 (March 1962).Google Scholar
  20. 20).
    Bandeen, W. R. and Manger, W. P., “Angular motion of the spin axis of the Tiros I meteorological satellite due to magnetic and gravitational torques,” NASA TN D-571 (April 1961).Google Scholar
  21. 21).
    Fischell, R. E., “Passive magnetic attitude control for earth satellites,” AAS paper 62–8, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  22. 22).
    Satellite data alters radiation belt theory,“ Aviation Week 30, 22 (December 1961).Google Scholar
  23. 23).
    Naumann, R. H., “An investigation of the observed torques acting on Explorer XI, ” AAS paper 62–46, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  24. 24).
    Arenatt, P. R., “Anomalies of the geomagnetic retardation of the spin of satellite Vanguard I (1958),” ARS J. 31, 286–289 (1961).Google Scholar
  25. 25).
    Colombo, G., “On the motion of Explorer XI around its center of mass,” AAS paper 62–42, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  26. 26).
    Roberson, R. E., “Origin and treatment of nonlinearity and parametric excitation in satellite attitude dynamics,” presented at the IUTAM International Symposium on Nonlinear Oscillations, Kiev, September1961.Google Scholar
  27. 27).
    McRuer, D. T. and Ashkenis, I., “Operating points, particle dynamics and coordinate systems for aerospace vehicle stability and control, ” Aeronautical Systems Division Rep. ASD-TR-61.-668 (March 1962).Google Scholar
  28. 28).
    Moran, J. P., “The effects of plane librations of the orbital motion of a dumbbell satellite,” ARS J. 31, 1089–1096 (1961).Google Scholar
  29. 29).
    Robinson, A. J., “On the use of quaternions in simulation of rigid body motion,” WADC Tech. Rep. 58–17 (December 1958).Google Scholar
  30. 30).
    Mortensen, R. E., “On systems for automatic control of the rotation of a rigid body,” Manuscript (1962).Google Scholar
  31. 31).
    Margulies, G. and Goodman, J., “Dynamical equations for the attitude matrix of an orbiting satellite,” ARS J. 32, 1414 (1962).Google Scholar
  32. 32).
    Leimanis, E. and Minorcki, N., “Dynamics and nonlinear mechanics,” Survey in Applied Mech. (John Wiley & Sons, Inc., New York, 1958 ), Vol. II.Google Scholar
  33. 33).
    Magnus, K., “Ergebnisse und Probleme der allgemeinen Kreiseltheorie, ” presented at the IUTAM Symposium on Gyrodynamics, Celerina, Switz., August 1962.Google Scholar
  34. 34).
    Beletskii, V. V., “Classification of the motion of an artificial earth satellite about its center of mass,” Iskusstvenniye Sputniki Zemli SSSR 6 (1961).Google Scholar
  35. 35).
    Zajac, E. E., “Capture problem in gravitational attitude control of satellites,” ARS J. 31, 1465–6 (1961).Google Scholar
  36. 36).
    DeBra, D. B. and Delp, R. H., “Rigid body attitude stability and natural frequencies in a circular orbit, ” J. Astronaut. Sci. 8, 14–17 (1961).Google Scholar
  37. 37).
    West, C. T. and Goodstein, R., “On the simplification of the attitude equations of a satellite,” Advances in Astronaut. Sci. (MacMillan, New York, 1961 ), Vol. 6, pp. 161–189.Google Scholar
  38. 38).
    Roberson, R. E., “Dynamical model for fine pointing attitude control of the orbiting astronomical observatory,” Manuscript (1962).Google Scholar
  39. 39).
    Dunn, J. C., “Magnetic polarization torque in a satellite environment - a comparison with gravitational torque,” presented at the XIIth International Astronautical Congress, Washington, October 1961.Google Scholar
  40. 40).
    Evans, W. J., “Aerodynamic and radiation disturbance torques on satellites having complex geometry,” AAS paper 62–49, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March1962.Google Scholar
  41. 41).
    Roberson, R. E., “Generalized gravity gradient torques,” presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  42. 42).
    McElvain, R. J., “Effects of solar radiation pressure upon satellite attitude control,” AAS preprint 1918–61, presented at the ARS Guidance, Control and Navigation Conference, Stanford Univ., August 1961.Google Scholar
  43. 43).
    Ives, N. E., “The effect of solar radiation pressure on the attitude control of an artificial earth satellite,” RAE TN-G. W. 570, April 1961.Google Scholar
  44. 44).
    White, J. B., “Meteoritic effects on attitude control of space vehicles,” ARS J. 32, 75–78 (1962).Google Scholar
  45. 45).
    Tabakin, F., “Torque on a spinning metallic sphere induced by a time dependent magnetic field,” STL Rep. 6120–0027-RU-000 (September 1961).Google Scholar
  46. 46).
    Smith, L. G., “A theoretical study of the torques induced by a magnetic field on rotating cylinders and spinning thin-wall cones, cone frustums, and general body of revolution,” NASA TR-R-129 (1962).Google Scholar
  47. 47).
    Roberson, R. E., “Gravity gradient determination of the vertical,” ARS J. 31, 1509–15 (1961).Google Scholar
  48. 48).
    Reich A., “Attitude determination - a new dimension for radar, ” IRE Cong. Proc. 1962 Natl. Winter Convention on Mil. Electronics, Los Angeles, February 1962, p. 105.Google Scholar
  49. 49).
    Ormsby, R. D. and Smith, M. C., “Capabilities and limitations of reaction spheres for attitude control,” ARS J. 31,.’ 808–812 (1961).Google Scholar
  50. 50).
    Tinling, B. E., “Measured steady-state performance of water vapor jets for use in space vehicle attitude control systems,” NASA TN D1302 (May 1962).Google Scholar
  51. 51).
    Lunde, B. K., “Horizon sensing for attitude determination,” AAS paper 62–47, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  52. 52).
    Goetz, D., “Accuracy and range of infrared horizon sensors as limited by detector noise,” ARS J.32, 1039–1044 (1962).Google Scholar
  53. 53).
    Novel infrared horizon indicator designed without moving parts, “ Aviation Week 30, 72–73 (September 4, 1961).Google Scholar
  54. 54).
    Conrath, B. J., “Earth scan analog signal relationships in the Tiros radiation experiment and their application to the problem of horizon sensing,” NASA TN D-1341 (June 1962).Google Scholar
  55. 55).
    Roberson, R. E., “Attitude reference as established by a horizon scanner,” J. Astronaut. Sci. 9 (1962).Google Scholar
  56. 56).
    Karrenberg, H. K. and Roberson, R. E., “Celestial rate sensing,” ARS J. 31, 440–441 (1961).Google Scholar
  57. 57).
    Hatcher, N. M. and German, E. F., “Study of a proposed infrared horizon scanner for use in space-orientation control system,” NASA TN D-1005 (January 1962).Google Scholar
  58. 58).
    Wormser, E. M. and Arck, M. H., “Infrared navigation sensors for space vehicles,” Progress in Astronautics and Rocketry (Academic Press, New York, 1962), Vol. 8.Google Scholar
  59. 59).
    Spencer, P. R., “Study of a solar sensor for use in space-vehicle orientation control system,” NASA TN-D-885 (June 1961).Google Scholar
  60. 60).
    McMorrow, D. R., Brownlee, C. A., Daradarian, S. and Schwartz, H., “A precision star tracker for space-vehicle attitude control and navigation,” ARS preprint 1930–61, presented at the ARS Guidance, Control and Navigation Conference, Stanford Univ., August 1961.Google Scholar
  61. 61).
    Klass, P. J., “Star-field tracker gives attitude date,” Aviation Week 31, 52, 53 (June 18, 1962 ).Google Scholar
  62. 62).
    Englehart, W. C., “Reaction jets for attitude control of space vehicles,” paper submitted in fulfillment of course requirements, University of California at Los Angeles (Fall 1961 ).Google Scholar
  63. 63).
    Bernstein, T. and Howard, D. R., “Design considerations for space vehicle reaction control A-C- servomotors,” ARS preprint 1961–61 presented at the ARS Guidance, Control and Navigation Conference, Stanford Univ., August 1961.Google Scholar
  64. 64).
    Thompson, W. T., “Passive attitude control of satellite vehicles,” Lecture 7 in the course “Aerospace Vehicle Guidance and Control”, University of California at Los Angeles (August 1961).Google Scholar
  65. 65).
    Baumann, R. C., “Vanguard satellite spin-reduction mechanism, ” NASA TN D-496 (April 1961).Google Scholar
  66. 66).
    Eide, D. G. and Vaughan, C. A., “Equation of motion and design criteria for the despin of a vehicle by the radial release of cables of finite mass,” NASA TN D-1012 (January 1962).Google Scholar
  67. 67).
    Fedor, J. V., “Theory and design curves for a yo-yo despin mechanism for satellites, ” NASA TN D-708 (August 1961).Google Scholar
  68. 68).
    Meirovitch, L., “Bending vibrations of a disc subjected to gyroscopic forces, ” J. Astronaut. Sci. 8, 88–93 (1961).Google Scholar
  69. 69).
    Meirovitch, L., “Attitude stability of an elastic body of revolution in space,” J. Astronaut. Sci. 8, 110–113 (1961).Google Scholar
  70. 70).
    Suddath, J. E., “Use of an inertia sphere to damp the angular motions of spinning space vehicles,” NASA TR R-137 (1962).Google Scholar
  71. 71).
    Reiter, G. S. and Thompson, W. T., “Rotational motion of passive space vehicles,” AAS paper 62–42, presented at the AAS Goddard Memorial Symposium, Washington, D. C., March 1962.Google Scholar
  72. 72).
    Fitzgibbon, D.P. and Smith, W. E., “Final report on study of viscous liquid passive wobble dampers for spinning satellites, ” STL Rep. EM 11–14 (June 26, 1961 ).Google Scholar
  73. 73).
    Adams, J. E., “Study of an active control system for a spinning body,” NASA-TN D-905 (June 1961).Google Scholar
  74. 74).
    Cole, R. D., Ekstrand, M. E. and O’Neill, M. R., “Attitude control of rotating satellites,” ARS J.31, 1446–1447 (1961).Google Scholar
  75. 75).
    Freed, L. E., “Attitude control system for a spinning body,” paper 61–207–1901, presented at the IAS–ARS National Joint Meeting, Los Angeles, June 1961.Google Scholar
  76. 76).
    Grasshof, L. H., “A method for controlling the attitude of a spin-stabilized satellite,” ARS J.31, 646–649 (1961).Google Scholar
  77. 77).
    Grubin, C., “A generalized two- impulse scheme for reorienting a spin-stabilized vehicle,” Progress in Astronautics and Rocketry (Ac - ademic Press, New York, 1962), Vol. 8, Guidance and Control.Google Scholar
  78. 78).
    Howe, R. M., “Attitude control of rockets using a single axis control jet, ” Proceedings of the XIth International Astronautical Congress, Stockholm, 1960 ( Springer-Verlag, Wien, 1961 ), pp. 88–98.Google Scholar
  79. 79).
    Windeknecht, T. G., “A simple system for sun orientation of a spinning satellite, ” paper 61–204–1898, presented at the IAS–ARS National Joint Meeting, Los Angeles, June 1961.Google Scholar
  80. 80).
    DeLisle, J. E., Ogletree, G. and Hildebrant, B. M., “Attitude control of satellites using integrating gyroscopes,” presented at the AAS 8th Annual Meeting, Washington, D. C., January 1962.Google Scholar
  81. 81).
    Bart, E. G. C., “On the attitude control of earth satellites,” presented at the Eight Anglo-American Aeronautical Conference, London, Sep - tember 1961.Google Scholar
  82. 82).
    Burt, E. G. C., “The influence of cyclic torques on the attitude control of earth-pointing satellites,” presented at the URSI Symposium on Communication Satellites, September 1961.Google Scholar
  83. 83).
    DeBra, D. N., “Attitude stability and motions of passive, gravity-oriented satellites, ” AAS preprint 62–6, presented at the AAS 8th Annual Meeting, Washington, D. C., January 1962.Google Scholar
  84. 84).
    DeBra, D. B., “The large attitude motions and stability, due to gravity, of a satellite with passive damping in an orbit of arbitrary eccentricity about an oblate body,” Ph. D. dissertation, Stanford Univ. (May 1962).Google Scholar
  85. 85).
    Fischell, R.E., “Magnetic and gravity attitude stabilization of earth satellites,” JHU-APL Rep. CM-996, Mai 1961.Google Scholar
  86. 86).
    Fischell, R. E., “Magnetic damping of the angular motion of earth satellites,” ARS J. 31, 1210–1217 (1961).Google Scholar
  87. 87).
    Schrello, D. M., “Aerodynamic influence on satellite librations,” ARS J. 31, 442–442 (1961).Google Scholar
  88. 88).
    Schrello, D. M., “Passive aerodynamic attitude stabilization of near earth satellites; Vol. I, Librations due to combined aerodynamic and gravitational torques”, WADD TR 61–133, Vol. I (July 1961).Google Scholar
  89. 89).
    Davison P. J., “Passive aerodynamic attitude stabilization of near earth satellites; Vol. II, Aerodynamic analysis,” WADD TR 61–133, Vol. II (July 1961).Google Scholar
  90. 90).
    Juelich, O. C., “Passive aerodynamic attitude stabilization of near earth satellites; Vol. III, Mathematical techniques and computer program, ” WADD TR 61–133, Vol. III (July 1961).Google Scholar
  91. 91).
    Hibbard, R. R., “Attitude stabilization using focused radiationpressure,” ARS J.31, 844–845 (1961).Google Scholar
  92. 92).
    Villers, P. and Olha, W., “A solar gail attitude stabilizer for satellites and interplanetary probes,” ARS preprint 2251–61, presented at the ARS Space Flight Report to the Nation, New York, October 1961.Google Scholar
  93. 93).
    Sohn, R. L. and Stern, R. G., “Stabilization of space vehicles by means of gas diffusing surfaces,” AAS preprint 61–89, presented at the AAS National Meeting, San Francisco, August 1961.Google Scholar
  94. 94).
    Abzug, M. J., “Active satellite attitude control,” Lecture in the course “Aerospace Vehicle Guidance and Control,” University of California at Los Angeles (August 1961).Google Scholar
  95. 95).
    Stewart, B. and Stewart, P. A. E., “Dynamics and engineering of satellite attitude control systems,” presented at the European Symposium on Space Technology, London, June 1961.Google Scholar
  96. 96).
    White, J. S. and Pappas, J. S., “General considerations for satellite attitude control systems,” IAS paper # 61–19, presented at the IAS 29th Annual Meeting, New York, January 1961.Google Scholar
  97. 97).
    Withford, R. K., “Design of attitude control systems for earth satellites,” STLRep. 2313–0001-RU-000 (June 30, 1961 ).Google Scholar
  98. 98).
    Lee, E. B., “Discussion of satellite attitude control, ” ARS J. 32, 981–982 (1962).Google Scholar
  99. 99).
    Roberson, R. E., “Stabilization and station keeping of communication satellites, ” presented at the URSI Symposium on Communication Satellites, Paris, September 1961.Google Scholar
  100. 100).
    Hilton, W. F. and Stewart, G., “The advantages of attitude stabilization and station keeping in communication satellite orbits,” J. Brit. IRE 193–229 (September 1961).Google Scholar
  101. 101).
    Nidey, R. A., “Astrostats for astrophysical research in space, ” Space Astrophysics Liller, W., ed. (McGraw-Hill, New York, 1961 ), Sec. III, Chap. 13.Google Scholar
  102. 102).
    Brown, S. C., “Predicted performance of on-off systems for precise satellite attitude control,” NASA TN D-1040 (July 1961).Google Scholar
  103. 103).
    Dahl, P. R., Aldrich, G. T. and Herman, L. K., “Limit cycles in reaction jet attitude control systems subject to external torques, ” Progress in Astronautics and Rocketry (Academic Press, New York, 1962), Vol. 8, Guidance and Control.Google Scholar
  104. 104).
    Dahl, P. R., Herman, L. K. and Aldricj, G. T., “Limit cycles in reaction jet attitude control systems subject to external torques, ” Aerospace Corp. Rep. TDR-930 (2250–20) TN-1 (April 16, 1962 ).Google Scholar
  105. 105).
    Fenzel, L. R., Nichol, K. C. and Wood, L. R., “Research and Feasibility study of control logic techniques for space vehicle attitude. controls,” Rep. ASK-TDR-62–76 (April 1962).Google Scholar
  106. 106).
    Gaylord, R. S., “Differentiating gas jet for space attitude control,” ARS J. 31, 75–6 (1961).Google Scholar
  107. 107).
    Gaylord, R. S. and Keller, W. N., “Attitude control system using logically controlled pulses, ” Progress in Astronautics andRocketry (Academic Press, New York, 1962), Vol. 8, Guidance and Control.Google Scholar
  108. 108).
    Mueller, H., “An attitude control system for extremely small control forces,” Proceedings of the XIth International Astronautical Congress, Stockholm, 1960 (Springer-Verlag, Wien, 1961), pp. 392403.Google Scholar
  109. 109).
    Nicklas, J. C. and Vivian, H. C., “Derived fate increment stabilization: its application to the attitude control problem,” ASME paper 61JAC-9, presented at the Joint Automatic Control Conference, Boulder, Colo., June 1961.Google Scholar
  110. 110).
    Patapaff, H., “Application of the rate diagram technique to the analysis and design of space vehicle on-off attitude control systems, ” ARS preprint 1924–61, presented at the ARS Guidance, Control and Navigation Conference, Stanford Univ., August 1961.Google Scholar
  111. 111).
    Peters, R. A., Kovacevich, V. J. and Graham, D., “Single - axis attitude regulation of extra-atmospheric vehicles,” Rep. ASD-TR61–129 (February 1962).Google Scholar
  112. 112).
    Wolfe, R. R., Corgan, J. M. and Teets, P. B., “Energy requirements for satellite stabilization of the gravity gradient,” ARS J. 31, 836838 (1961).Google Scholar
  113. 113).
    Avrech, N., “Use of the earth’s magnetic field for navigation and attitude control, ” Proc. IRE 50, 485 (1962).Google Scholar
  114. 114).
    Buckingham, A. G., “A new method of attitude control utilizing the earth’s magnetic field for long life space vehicles,” ARS preprint 1915–61, presented at the ARS Guidance, Control and Navigation Conference, Stanford Univ., August 1961.Google Scholar
  115. 115).
    Burrow, J. W., “Momentum damping using magnetic torques,” ARS J.31, 1776–1778 (1961).Google Scholar
  116. McElvain, R. J., “Satellite angular momentum removal utilizing the earth’s magnetic field,” AAS paper 62–53, presented at the AAS Goddard Memorial Symposium, Washington, D. C. March 1962.Google Scholar
  117. 117).
    White, J. S., Shigemoto, F. H. and Bourquin, K., “Satellite attitude control utilizing the earth’s magnetic field, ” NASA TND-1068 (Au - gust 1961 ).Google Scholar
  118. 118).
    Cannon, R. H., Jr., “Gyroscopic coupling in space vehicle attitude control systems,” ASME paper 61-JAC-8, presented at the Joint Automatic Control Conference, Boulder, Colo., June 1961.Google Scholar
  119. 119).
    Cannon, R. H., Jr., “Some basic response relations for reaction–wheel attitude control,” paper 61–203–1897, presented at the IAS–ARS National Joint Meeting, Los Angeles, June 1961.Google Scholar
  120. 120).
    DeBra, D. B. and Cannon, R. H., “Momentum vector considerations in wheel-jet satellite control system design,” Progress in Astro - nautics and Rocketry (Academic Press, New York, 1962), Vol. 8, Guidance and Control.Google Scholar
  121. 121).
    Grubin, C., “Exact limit cycle solutions for the single-axis reaction wheel attitude control system,” Proceedings of the XIth International Astronautical Congress, Stockholm, 1960 ( Springer-Verlag, Wien, 1961 ), pp. 537–548.Google Scholar
  122. 122).
    Rowell, L. N. and Smith, M. C., “Effect of geometric libration on the damped motion of an earth satellite,” ARS J. 31, 361–364 (1961).Google Scholar
  123. 123).
    Truxal, J. G. and Mishkin, G., “On the evaluation of an attitude control system, ” Proceedings of the Symposium on Active Networks and Feedback Systems Polytechnic Institute of Brooklyn, April 1960 ( Polytechnic Press, Brooklyn, 1961 ), pp. 81–91.Google Scholar
  124. 124).
    White, J. S. and Hansen, Q. M., “Study of systems using inertia wheels for precise attitude control of a satellite,” NASA TN D-691 (April 1961).Google Scholar
  125. 125).
    Cannon, R. H., Jr., “Basic response relations for attitude control using gyros, ” Manuscript (1962).Google Scholar
  126. 126).
    Kennedy, H. B., “A gyro momentum exchange device for space vehicle attitude control,” IAS paper 62–88, presented at the IAS National Summer Meeting, Los Angeles, June 1962.Google Scholar
  127. 127).
    White, J. S. and Hansen, Q. M., “Study of a satellite attitude control system using integrating gyros as torque sources,” NASA TN D -1073 (September 1961).Google Scholar

Copyright information

© Springer-Verlag Wien 1964

Authors and Affiliations

  • E. Roberson
    • 1
  1. 1.FullertonUSA

Personalised recommendations