Advertisement

Industrial Robots: Application of a Rational Solution for the Direct and Inverse Dynamic Problem

  • Federico Casolo
  • Rodolfo Faglia
  • Giovanni Legnani
Conference paper

Summary

Practical applications of a new approach [5–8,18] to the kinematic and dynamic analysis of chains of rigid bodies are here presented. The adopted procedure is based on 4x4 matrices that are cartesian representations of tensors. This method can be considered as a generalization of the Denavit and Hartenberg’s method [10] coherently extended to the whole kinematics and dynamics.

Moreover, this general approach comprises and allows a better interpretation of other methods proposed in the last years for the solution of individual problems [16, 17, 26, 27, 28, 31, 32].

Some examples of application highlight the consequent clear notation and straightforward procedures. Finally, the list of a specific program shows the concise code obtained by using a custom-made software library.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. AIMETA Ass. Italiana di Meccanica Teorica ed Applicata.Google Scholar
  2. IJRR InternationalJournalofRoboticResearch. MIT.Google Scholar
  3. MMT MechanismsandMachineTheory. Pergamon Press.Google Scholar
  4. [1]
    Andrez. E., Losco L., Andre P., Taillard J.P. “Generation Automatique et Semplification des equations litterales des systemes Mecaniques Articules” MMT Vol. 20, N. 3, pp. 199–208, 1985.Google Scholar
  5. [2]
    J. Angeles, “On the Numerical Solution of the Inverse Kinematic Problem” IJRR Vol. 4 n. 2 1985.Google Scholar
  6. [3]
    J.E. Baker “Screw System Algebra Applied to Special Linkage Configuration” MMT Vol. 4 N. 4 1986Google Scholar
  7. [4]
    J. Casey, V.C. Lam “A Tensor Method for the Kinematical Analysis of System of Rigid Bodies ” MMT Vol. 21 N. 1 1986.Google Scholar
  8. [5]
    F. Casolo, R. Faglia, G. Legnani “Three Dimensional Analysis of Systems of Rigid Bodies” 10th DECUS italian Congress. April 1989, Baveno NO, Italy.Google Scholar
  9. [6]
    F. Casolo, G. Legnani “A Consistent Matrix Approach for the Kinematic and Dynamics of Chains of Rigid Bodies” 9th AIMETA National Congress 1988, Bari, Italy.Google Scholar
  10. [7]
    F. Casolo, G. Legnani “A New Approach to the Dynamics of Human Motion” 2nd Int. Symposium on Computer Simulation in Biomechanics. June 24–25, 1989. Davis CA, U.S.A.Google Scholar
  11. [8]
    F. Casolo, G. Legnani “ANewApproachtoIdentifyKinematicPeculiaritiesinHumanMotion” XII Int. Congress of Biomechanics UCLA. June 27–30, 1989 U.S.A.Google Scholar
  12. [9]
    P. Choiffet “Les Robots, Tome 1: Modelisation et Commande.” Hermes, Neully 1981.Google Scholar
  13. [10]
    J. Denavit, R. S. Hartenberg “A Kinematic Notation for Lower Pairs Mechanisms Based on Matricies ” Trans. of ASME J.App. Mech. vol. 22, June 1955.Google Scholar
  14. [11]
    Denavit, R.S. Hartenberg, R. Razi, J.J. Uiker “Velocity, Acceleration and Static-Forces Analyses of Spatial Linkages. Jou. ofAppliedMechanics december 1965. pag.903.Google Scholar
  15. [12]
    S.H. Dwivedi, Ming-Shu Hsu, Dilip Kohli “Work Space and Jacobian Surfaces of Regional Structures of Industrial Robot” 6-th IFToMM World Cong. 1983.Google Scholar
  16. [13]
    R.Faglia, G. Legnani “S. A.M. ROBOT: Simulazione ad Analisi Meccanica di Robot Industriali” Pixel N.11 1987 Ed. Il Rostro Milano.Google Scholar
  17. [14]
    E.F. Fitchter “A Stewart Platform-Based Manipulator: General Theory and Pratical Construction” IJRR Vol. 5 N. 2 1986Google Scholar
  18. [15]
    G. Frosi, P. Rugginenti, A. Rovetta “Interazioni Dinamiche nei Robot: Sviluppo di un Modello Matematico” 7-th AIMETA National Conor. 1984.Google Scholar
  19. [16]
    C.U. Galletti, R. Ghigliazza“Meccanica alle Macchine” UTET Torino 1986.Google Scholar
  20. [17]
    P. Gervais, G.W. Marino “A Procedure for Determining Angular Positional Data Relative to the Principal Axes of Human Body ” J.Biomechanics Vol. 16 N. 2 1983.Google Scholar
  21. [18]
    G. Legnani “Metodi Matriciali per la Cinematica dei Robot” (Matrix Methods in Robot Kinematics) Doctoral Dissertation. Politecnico di Milano Italy 1986.Google Scholar
  22. [19]
    G.Legnani, R.Riva “Un Modello per lo Studio di Robot Modulari” T’ AIMETA National Congr. 1984.Google Scholar
  23. [20]
    G. Legnani, R. Riva “Kinematics of Modular Robots” 7-th IFToMM World Congress. Sevillia 1987.Google Scholar
  24. [21]
    G. Legnani, R. Riva. “A New Matrix Approach to the Dynamics of Spatial Mechanisms” SYROM’89: the 5th IFToMM Int. Symposium on Linkages and Computer Design Methods. July 6–11, 1989. Bucarest, Romania.Google Scholar
  25. [22]
    K.H. Hunt “Special Configuration of Robot-Arms via Screw Theory” Robotica Vol. 4, pp. 171–179, 1986.Google Scholar
  26. [23]
    A. Maggiore, V. Parenti Castelli “Dinamica dei Manipolatori. Determinazione della Configurazione Ottimale del Manipolatore nell’Esecuzione di Traiettorie Prestabilite.” 7-th AIMETA National Congress Trieste Italy. october 2/5-th 1984.Google Scholar
  27. [24]
    P.Morasso, V.Tagliasco “Analysis of Human Movement: Spatial Localisation with Multiple Prospective views” Medical & Biological Eng. & Computing. January 1983.Google Scholar
  28. [25]
    J.M. Mc Carthy “Dual Orthogonal Matrices in Manipulator Kinematics” IJRR Vol. 5 N. 2 1986.Google Scholar
  29. [26]
    C.P. Neuman, V.D. Tourassis “Proprieties and Structure of Dynamic Robot Models for Control Engineering Applications ” MMT Vol. 20, N. 1, 1985.Google Scholar
  30. [27]
    B. Paul, J. Rosa. “Kinematics Simulation of Serial Manipularors” IJRR Vol. 5 N. 2 1986Google Scholar
  31. [28]
    P. Paul Richard “Robot Manipulators: Mathematics. Programming and Control” MIT Press, Cambridge 1981.Google Scholar
  32. [29]
    C. W. Spoor, F. E.Veldpaus “Rigid Body Motion Calculated from Spatial Co-ordinates of Markers”. J. Biomechanics 1980 Vol.13Google Scholar
  33. [30]
    Tonti “Introduzionealcalcolotensoriale” Quaderni di matematica applicata. Politecnico di Milano 1960.Google Scholar
  34. [31]
    J.J. Uicker “Dynamic Behavior of Spatial Linkages ”Journal of Engineering for Industry. Februray 1969. pag.251.Google Scholar
  35. [32]
    J.J. Uicker, P.N. Sheth “IMP(Integrated Mechanisms Program), A Computer-Aided Design Analysis System for Mechanisms and Linkage.” Journalof EngineeringforIndustrv.7 Google Scholar
  36. [33]
    Van Aken L., Van Brussel H. “Software for Solving the Inverse Kinematic Problem for Robot Manipulators in Real Time” Advanced Software in Robotics, Elseivier, Amsterdam 1984.Google Scholar
  37. [34]
    G.R. Veldkamp “On the Use of Dual Numbers, Vectors and Matrices in Istantaneous, Spatial Kinematics ” MMT Vol. 11, n. 2, 1976.Google Scholar
  38. M.Vukobratovic, V. Potkonjak“Scient. FondamentalOfrobotics6-App. Dvn.andCADofManipulationRobots” Springer-Verlag 1985.Google Scholar
  39. [36]
    J. Wittenburg “DynamicofSystemofRigidBodies” LAMM series v.33 1977.Google Scholar
  40. [37]
    M.R. Yeadon “The simulation of aerial movement” J.ofBiomechanics 1987.Google Scholar
  41. [38]
    F. Casolo, G. Legnani, R. Faglia “Dynamic Symulation of Whole Body Motion: an Application to Horse Vaulting.” 10th AIMETA nat. congress. Pisa, Italy 1990.Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • Federico Casolo
    • 1
  • Rodolfo Faglia
    • 2
  • Giovanni Legnani
    • 2
  1. 1.Politecnico di Milano, Inst.MilanoItaly
  2. 2.Universita’ di Brescia - Dip. di IngMompiano BSItaly

Personalised recommendations