Automatic Derivation of the Inverse Geometric Model of Robots

  • W. Khalil
  • F. Bennis
Conference paper


This paper presents a program for the automatic generation of closed form solution of the symbolic inverse geometric model of some structures of six degree of freedom robots. These structures are characterised by the possibility of decoupling the inverse geometric problem of six unknowns into two problems with three unknouns. The solution is given whatever the values of the geometric parameters (angles and distances between successive axes) not conditioning the structure. The given program constitutes a module of the software package of symbolic modelling of robots “SYMORO”.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    DL. Pieper, “ The kinematics of manipulators under computer control ”. Ph. D. Thesis, Stanford University, Stanford 1968.Google Scholar
  2. [2]
    R.C.P. Paul, “ Robot manipulators: mathematics, programming and control ”, MIT Press, 1981.Google Scholar
  3. [3]
    R.C.P. Paul, B.E. Shimano, G. Mayer,“ Kinematic control equations for simple manipulators ”. WEE Trans. of Systems, Man, and Cybernetics, Vol. SMC-11, (6), 1981,.Google Scholar
  4. [4]
    R. Featherstone, “Position and velocity transformations between robot end-effector coordinates and joint angles”, Int.J. of Robotics Research, Vol. 2 (2), 1983, pp. 35–45.CrossRefGoogle Scholar
  5. [5]
    C.S.G. Lee, M. Ziegler, “A geometric approach in solving the inverse kinematics of PUMA robots”, Proc.13th Int. Symp. on Industrial robots, Chicago, april 1983, pp. 16–1, 16–18.Google Scholar
  6. [6]
    S. El Gazar, “Efficient kinematic transformation for the PUMA 560 robot”, IEEE J. of Robotics and Automation, Vol. RA. 1 (3), 1985, pp. 142–151.CrossRefGoogle Scholar
  7. [7]
    W. Khalil, “On the explicit derivation of the inverse geometric models of robots”, Proc. IMACSIFAC Symp., Villeneuve D’Ascq, France, juin 1986, pp.541–546 .Google Scholar
  8. [8]
    W. Khalil, J.F. Kleinfinger, “A new geometric notation for open and closed-loop robots”. Proc. IEEE Conf. on Robotics and Automation, San Francisco, 1986, pp. 1174–1180.Google Scholar
  9. [9]
    E.Dombre, W.Khalil, “Modélisation et commande des robots”. Edition Hermès, Paris, 1988.Google Scholar
  10. [10]
    F.Bennis,“Contribution à la modélisation symbolique des robots” thèse de doctorat, Janvier 1991.Google Scholar
  11. [11]
    W. Khalil, F. Bennis, C. Chevallereau, J.F. Kleinfinger, “SYMORO: A softword package for the symbolic modelling of robots.”, 20th ISIR, Tokyo, October 1989, pp. 1023–1030.Google Scholar
  12. [12]
    W.Khalil,“ SYMORO: Symbolic Modelling of robots - User guide”, LAN, Nantes, 1990.Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • W. Khalil
    • 1
  • F. Bennis
    • 1
  1. 1.E.N.S.M, Laboratoire d’Automatique de Nantes UAR C.N.R.S 823Nantes cedexFrance

Personalised recommendations