Displacement Analysis of the Homogeneous, Orthogonal 7-Link 7R Space Mechanism

  • P. Dietmaier
Conference paper


The input-output equations in the tan-half-angle for all angular displacements that can be chosen as output of a homogeneous, orthogonal, closed loop linkage with seven revolute joints are derived from a set of 20 equations in one parameter. To obtain these input-output equations (polynomial equations of degree 16 in three variables) a computer algebra program is used throughout the calculation.

Because of the enormous number of terms of these equations only the structure and numerical solutions of the input-output relations are presented here.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Duffy and C. Crane, A Displacement Analysis of the General Spatial 7-link, 7R Mechanism, Mech. Mach. Theory 15, p. 153–169 (1980).CrossRefGoogle Scholar
  2. 2.
    H.-Y. Lee, Analysis of the spatial mechanism. M.Sc. Thesis, Beijing Institute of Posts and Telecommu—nications (1984). (In Chinese)Google Scholar
  3. 3.
    R. G. Selfridge, Analysis of 6 Link Revolute Arms, Mech. Mach. Theory 24, p. 1–8 (1989)CrossRefGoogle Scholar
  4. 4.
    H.-Y. Lee and Ch.G. Liang, A new Vector Theory for the Analysis of Spatial Mechanism, Mech. Mach. Theory 23, p. 209–217 (1988)CrossRefGoogle Scholar
  5. 5.
    K. Wohlhart, Die homogene, orthogonale und nicht versetzte Zwanglaufkette 7R und ihr Spiegelbild, Proceedings of the Sixth World Congress on Theory of Machines and Mechanisms, p.272–276 (1983 New Delhi)Google Scholar
  6. 6.
    K. Wohlhart, Displacement analyses of a basic 7R space mechanism, Proceedings of the 4th Int. Symposium on Linkages and Computer Aided Design Methods, Vol. II-2, p. 421–428 (1985)Google Scholar
  7. 7.
    K. Wohlhart, The second basic 7R mechanism, 11th Polish Conference on the Theory of Machines and Mechanisms, p. 399–419 (1987)Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • P. Dietmaier
    • 1
  1. 1.Institut für Mechanik Technische Universität GrazGrazAustria

Personalised recommendations