Advertisement

Identification of Robot Kinematic Parameters for the Nearly Parallel Joints

  • D. H. Kim
  • K. H. Kuk
  • J. H. Oh
Conference paper

Abstract

This paper presents a simple identification method of the actual kinematic parameters for the robot with parallel joints. It is known that Denavit—Hartenberg’s coordinate system is not useful for nearly parallel joints. In this paper, the coordinate frames are reassigned to model the kinematic parameter between nearly parallel joints by four parameters. The identified kinematic parameters which make the error function zero are obtained by iterative least square error method based on the singular value decomposition.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.P. Paul, Robot Manipulators: Mathematics, Programming and Control (M.I.T. Press, 1982 ).Google Scholar
  2. 2.
    D.L. Riley, “Robot Calibration and Performance Specification Determination,” 17th ISIR, 10. 1–10. 15 (1987).Google Scholar
  3. 3.
    G. Duelen, U. Kirchhoff, and J. Held,“Method of Identification of Geometrical Data in Robot Kinematics,” Robotics and computer Integrated Manuf 4, No. 1, 181–185 (1988).Google Scholar
  4. 4.
    J.S. Shamma and D.E. Whitney, “A Method for Inverse Robot Calibration, ”ASME J. Dyn. Sys. Meas. Cont 109, No. 1, 36–43 (1987).CrossRefGoogle Scholar
  5. 5.
    D.E. Whitney, C.A. Lozinski, and J.M. Rouke, “Industrial Robot Forward Calibration Method and Results,” ASME J. Dyn. Sys. Meas. Cont 108, No. 1, 1–8 (1986).CrossRefzbMATHGoogle Scholar
  6. 6.
    B. W.Mooring, T. J. Pack, “Calibration Procedure for an Industrial Robot,” IEEE, International Conf on Robotics and Automation 786–791(1988).Google Scholar
  7. 7.
    R.P. Judd and A.B. Kanasinski, “A Technique to Calibrate Industrial Robots with Experimental Verification,” Proc. IEEE, Int. Conf. on Robotics and Automation, 351–357 (1987).Google Scholar
  8. 8.
    G.E. Forsythe, M.A. Malcolm, and C.B. Moler, Computer Methods for Mathematical Computation (Prentice—Hall, 1977 ).Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • D. H. Kim
    • 1
  • K. H. Kuk
    • 1
  • J. H. Oh
    • 2
  1. 1.Korea Institute of Machinery and MetalsKorea
  2. 2.Korea Advanced Institute of Science and TechnologyKorea

Personalised recommendations