Advertisement

Global Determination of the Minimal Set of Inertial Parameters of Robots Having Open or Closed-Loop Kinematic Structures

  • P. Desbats
  • A. Micaelli
Conference paper

Abstract

This paper presents a method, as well as a program, for the automatic derivation of the minimal set of inertial parameters of robot manipulators. It is proved that this method obtains a minimal set of parameters grouped together for robots having closed or open-loop kinematic chains. The determination of this set of parameters contributes to reduce the computation cost of the dynamic models and allows to calibrate with precision the robots control or simulation models. The modeling program, named MODYRO, is based on advanced symbolic computation. We show how this method has been applied with success to the RACE robot. It is a high speed four axis direct drive robot, designed by the French Atomic Energy Agency (C.EA), which has a strong closed-loop structure.

Keywords

Closed-Loop Robots Dynamic Modeling of Robots Minimum Inertial Parameters of Robots Symbolic Computation of Robots Models. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D’ANDREA-NOVEL B. Commande non linéaire des robots. ed. Hermès, traité des nouvelles technologies, série robotique, Paris, 1988.Google Scholar
  2. [2]
    AN C.H. Trajectory and force control of a direct drive arm. Technical report nbr. AI-TR-912, MIT, Artificial Intelligence Laboratory, sept. 1986.Google Scholar
  3. [3]
    BENNIS F., KHALIL W. Minimum inertial parameters of robots with parallelogram closed-loops. Proc. of the IEEE Conf. on Robotics and Automation, Cincinnati, may 1990, p. 1026–1031.Google Scholar
  4. [4]
    DESBATS P. Modélisation et commande dynamiques des robots rapides. Thèse de Doctorat, université de Paris XI, juin 1990.Google Scholar
  5. [5]
    DE SIQUIERA NOTO J.L., PEREIRA A.E.C., DA MOTA ALVES J.B. Symbolic computation applied to robot dynamic modeling. Proc. of 16 th ISIR, 8 th int. conf. on industrial robot technology, October 1986 Brussels p. 389–400.Google Scholar
  6. [6]
    GAUTHIER M., KHALIL W. A Direct Determination of Minimum Inertial Parameters of Robots. Proc. of the IEEE Conf. on Robotics and Automation, Philadelphia, April 1988, p. 1682–1687.Google Scholar
  7. [7]
    GAUTHIER M. Numerical calculation of the base inertial parameters of robots. Proc. of the IEEE Conf. on Robotics and Automation, Cincinnati, may 1990, p. 1020–1025.Google Scholar
  8. [8]
    IZAGUIRRE A., PAUL R. Automatic generation of the dynamic equations of the robot manipulator using a LISP program. Proc. of the IEEE conf. on robotics and automation, San Francisco, april 1986, p. 220–226.Google Scholar
  9. [9]
    KHALIL W., KLEINFINGER J.F. Reducing the computation burden of the dynamic models of robots. Proc. IEEE of the conf. on robotics and automation, San Francisco, april 1986, p. 525–531.Google Scholar
  10. [10]
    KHALIL W., KLEINFINGER J.F. A New Geometric Notation for Open and Closed-Loop Robots. IEEE Int. Conf. on Robotics and Automation, San Francisco, April 1986, p. 1174–1179.Google Scholar
  11. [11]
    KHALIL W, DOMBRE E. Modélisation et commande des robots. Ed. Hermès, collection “traité des nouvelles technologies”, série “robotique”, Paris 1988.Google Scholar
  12. [12]
    KHATIB O. Dynamic Control of Manipulator in Operational Space. 6h IFTOMM Congress on theory of machines and mechanisms, New Dehli (India), Dec. 1983.Google Scholar
  13. [13]
    KHOSLA P.K., KANADE T. Realtime implementation and evaluation of model-based controls on CMU DD Ann H. Proc. of the IEEE, conf. on robotics and automation, San Francisco, april 1986.Google Scholar
  14. [14]
    LUH J.Y.S., ZHENG Y.F. Computation of input generalized forces for robots with closed kinematic chain mechanism IEEE, J. of robotics and automation,vol. RA-1(2), 1985, p. 95–103.Google Scholar
  15. [15]
    MURRAY J.J., NEUMANN C.P. ARM: an algebraic robot dynamic modeling program. Proc. of the first IEEE conf. on robotics, march 1984, Atlanta (USA), p. 103–114.Google Scholar
  16. [16]
    MIDDLETON R., GOODWIN G.C. Adaptative computed torque control for rigid link manipulators. Proc. of the 25 th IEEE conf. on decision and control, Athena, December 1986, p. 68–73.Google Scholar
  17. [17]
    SLOTINE J.J., LI W. On the Adaptative Control of Robot Manipulators. Int. J. of Robotics Research, nbr. 6, 1987, p. 49–59.CrossRefGoogle Scholar
  18. [18]
    VECCHIO L, NICOSIA S., NICOLÖ F., LENTINI D. Automatic generation of dynamical models of manipulators. Proc. of the 10 rn IsIR, march 1985, Milan p. 293–304.Google Scholar

Copyright information

© Springer-Verlag Wien 1991

Authors and Affiliations

  • P. Desbats
    • 1
  • A. Micaelli
    • 2
  1. 1.Renault—AutomationCEA—CEN/FAR, DTA/URFontenay-aux-Roses cedexFrance
  2. 2.CEA—UGRACEA—CEN/FAR, DTA/URFontenay-aux-Roses cedexFrance

Personalised recommendations