Skip to main content

Electrophysiological Monitoring of Intraoperative Cerebral Hypoperfusion States

  • Chapter
Evoked Potentials

Abstract

Critical low levels of blood flow and oxygen supply may induce irreversible structural damage of nervous tissue. Ischemic injury follows the impairment of membrane electrical properties1, 2, 3, 11 which may be easily detected by the recording of spontaneous or evoked cerebral electrical activity4, 5, 7, l5, 18. For this reason electroencephalography (EEG) and somatosensory evoked potentials (SEPs) have been used to reveal possible functional consequences of low perfusion states8, 9, 10, 12, 14, 15, 16, 17.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrup J (1982) Energy-requiring cell functions in the ischemic brain. Their critical supply and possible inhibition in protective therapy. J Neurosurg 56: 482–497

    Article  CAS  PubMed  Google Scholar 

  2. Astrup J, Moller Sorensen P, Rahbek Sorensen H (1981) Oxygen and glucose consumption related to Na+—K+ transport in the canine brain. Stroke 12: 726–730

    Article  CAS  PubMed  Google Scholar 

  3. Astrup J, Siesjo BK, Symon L (1981) Thresholds in cerebral ischemia. The ischemic penumbra. Stroke 12: 723–725

    Google Scholar 

  4. Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potentials and tissue blood flow. Relationships during progressive ischemia in baboon cerebral cortex. J Neurol Sci 32: 305–321

    Google Scholar 

  5. Branston NM, Symon L, Crockard HA, Pasztor E (1974) Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45: 195208

    Google Scholar 

  6. Clark DL, Rosner BS (1973) Neurophysiologic effect of general anesthetics. I. The electroencephalogram and sensory evoked response in man. Anesthesiology 38: 564–579

    Google Scholar 

  7. Cusick JF, Myklebust JB (1985) The relationship of somatosensory evoked potentials and cerebral blood flow. In: Cerebral revascularization for stroke. Thieme-Stratton Inc, New York, pp 160–165

    Google Scholar 

  8. Ducati A, Cenzato M, Landi A, Sironi VA, Massei R, Beretta L, Prati R, Bortolani E, Trazzi R (1985) Somatosensory evoked potentials and electroretinography compared with EEG during carotid endarterectomy. 8th International Congress of Neurological Surgery, Toronto

    Google Scholar 

  9. Grundy BL (1982) Monitoring of sensory evoked potentials during neurosurgical operations: methods and applications. Neurosurgery 11: 556–575

    Article  CAS  PubMed  Google Scholar 

  10. Grundy BL, Nelson PB, Lina A, Heros RC (1982) Monitoring of cortical somatosensory evoked potentials to determine the safety of sacrificing the anterior cerebral artery. Neurosurgery 11: 64–67

    Article  CAS  PubMed  Google Scholar 

  11. Heiss WD, Hayakawa T, Waltz AG (1976) Cortical neuronal function during ischemia. Effects of occlusion of one middle cerebral on single-unit activity in cats. Arch Neurol 33: 813–820

    Google Scholar 

  12. Markand ON, Dillay RS, Moorthy SS, Warren C Jr (1984) Monitoring of somatosensory evoked responses during carotid endarterectomy. Arch Neurol 41: 375–378

    Article  CAS  PubMed  Google Scholar 

  13. Mc Pherson RW, Mahla M, Johnson R, Traystam RJ (1985) Effects of enflurane, isoflurane and nitrous oxide on somatosensory evoked potentials during fentanyl anesthesia. Anesthesiology 62: 626–633

    Article  Google Scholar 

  14. Raudzens PA, Spetzler RF, Carter LP, Wilkinson E (1985) Cerebral electrical activity during low flow states. In: Cerebral revascularization for stroke. Thieme-Stratton Inc, New York, pp 187–196

    Google Scholar 

  15. Sharbrough FW, Messick JM Jr, Sundt TM Jr (1973) Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke 4: 674–683

    Article  CAS  PubMed  Google Scholar 

  16. Sundt TM Jr, Houser OW, Sharbrough FW, Messick JM Jr (1977) Carotid endarterectomy: results, complications and monitoring techniques. Advances in Neurology 16: 97–119

    PubMed  Google Scholar 

  17. Symon L, Wang AD, Costa e Silva IE, Gentili F (1984) Perioperative use of somatosensory evoked responses in aneurysm surgery. J Neurosurg 60: 269275

    Google Scholar 

  18. Umbach C, Heiss WD, Traupe H (1981) Effect of graded ischemia on functional coupling and components of somatosensory evoked potentials. J Cereb Blood Flow Metab 1: S 198—S 199

    Google Scholar 

  19. Wang AD, Costa e Silva IE, Symon L, Jewkes D (1985) The effects of halothane on somatosensory and flash visual evoked potentials during operations. Neurol Res 7: 58–62

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer-Verlag Wien

About this chapter

Cite this chapter

Lutzemberger, L., Parenti, G., Tusini, G. (1988). Electrophysiological Monitoring of Intraoperative Cerebral Hypoperfusion States. In: Grundy, B.L., Villani, R.M. (eds) Evoked Potentials. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4431-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4431-2_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82059-9

  • Online ISBN: 978-3-7091-4431-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics