Sensitivity and Cyclic Nucleotides in the Rat Pineal Gland

Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)


β-adrenergic stimulation induces serotonin N-acetyltransferase (SNAT) activity in the rat pineal gland. The magnitude and some of the characteristics of this response vary as a function of the gland’s previous exposure to stimulation. A period of stimulation results in a subsensitive response to subsequent stimulation. A period without stimulation provides a super-sensitive response to subsequent stimulation. Investigations concerned with the mechanisms regulating the rat pineal’s sensitivity to β-adrenergic stimulation are described. These have focused on the regulation of cyclic AMP metabolism. Several of the components involved in the induction of SNAT activity appear to participate in the regulation of sensitivity. These include the β-adrenergic binding sites, the catecholamine-sensitive adenylate cyclase, the cyclic nucleotide Phosphodiesterase, and the cyclic AMP-dependent protein kinase. Thus, the rat pineal’s sensitivity to β-adrenergic stimulation appears to be regulated at multiple sites. Other investigations have focused on the regulation of pineal cyclic GMP metabolism. Unlike cyclic AMP, the stimulation of cyclic GMP synthesis requires the presence of intact nerve endings and of extracellular calcium. Some of the characteristics of pineal cyclic GMP regulation are described.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, J.: The pineal gland: a neurochemical transducer. Science 184, 1341–1348 (1974).CrossRefPubMedGoogle Scholar
  2. Axelrod, J., Weissbach, H.: Purification and properties of hydroxyindole-Omethyltransferase. J. Biol. Chem. 236, 211–213 (1961).PubMedGoogle Scholar
  3. Axelrod, J., Shein, H. M., Wurtman, R. J.: Stimulation of 14C-melatonin synthesis from 14C-tryptophan by noradrenaline in rat pineal in organ culture. Proc. Natl. Acad. Sci. U.S.A. 62, 544–549 (1969).CrossRefPubMedCentralPubMedGoogle Scholar
  4. Bennett, V., Cuatrecasas, P.: Mechanism of activation of adenylate cyclase by Vibrio cholerae entertoxin. J. Memb. Biol. 22, 1–52 (1975).CrossRefGoogle Scholar
  5. Brownstein, M. J., Axelrod, J.: Pineal gland: a 24-hour rhythm in nor-epinephrine turnover. Science 184, 163–165 (1974).CrossRefPubMedGoogle Scholar
  6. Cassel, D., Selinger, Z.: Mechanism of adenylate cyclase activation by cholera toxin: Inhibition of GTP hydrolysis at the regulatory site. Proc. Natl. Acad. Sci. U.S.A. 74, 3307–3311 (1977).CrossRefPubMedCentralPubMedGoogle Scholar
  7. Deguchi, T., Axelrod, J.: Control of circadian change of serotonin N-acetyltransferase in pineal organ by the β-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. 69, 2547–2550 (1972).CrossRefPubMedCentralPubMedGoogle Scholar
  8. Deguchi, T., Axelrod, J.: Supersensitivity and subsensitivity of the β-adrenergic receptor in pineal gland regulated by catecholamine transmitter. Proc. Natl. Acad. Sci. U.S.A. 70, 2411–2414 (1973 a).CrossRefPubMedCentralPubMedGoogle Scholar
  9. Deguchi, T., Axelrod, J.: Superinduction of serotonin N-acetyltransferase and supersensitivity of adenylate cyclase to catecholamine in denervated pineal gland. Mol. Pharmacol. 9, 612–618 (1973 b).PubMedGoogle Scholar
  10. Fontana, J. A., Lovenberg, W.: A cyclic AMP-dependent protein kinase of the bovine pineal gland. Proc. Natl. Acad. Sci. U.S.A. 68, 2787–2790 (1971).CrossRefPubMedCentralPubMedGoogle Scholar
  11. Gill, D. M.: Involvement of nicotinamide adenine dinucleotide in the action of cholera toxin in vitro. Proc. Natl. Acad. Sci. U.S.A. 72, 2064–2068 (1975).CrossRefPubMedCentralPubMedGoogle Scholar
  12. Goldberg, N. D., Haddox, M. K., Nicol, S. E., Glass, D. B., Sanford, C. H., Kuehl, F. A., Estensen, R.: Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the yin yang hypothesis. In: Advances in Cyclic Nucleotide Research, Vol. 5 (Drummond, G. I., Greengard, P., Robison, G. A., eds.), pp. 307–330. New York: Raven Press. 1975.Google Scholar
  13. Goldberg, N. D., Haddox, M. K.: Cyclic GMP metabolism and involvement in biological regulation. Ann. Rev. Biochem. 46, 823–896 (1977).CrossRefPubMedGoogle Scholar
  14. Kapoor, C. L., Krishna, G.: Hormone-induced cyclic guanosine mono-phosphate secretion from guinea pig pancreatic lobules. Science 196, 1003–1005 (1977).CrossRefPubMedGoogle Scholar
  15. Kappers, J. A.: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch. 52, 163–215 (1960).CrossRefPubMedGoogle Scholar
  16. Kebabian, J. W., Zatz, M., Romero, J. A., Axelrod, J.: Rapid changes in rat pineal β-adrenergic receptor: alterations in 3H-alprenolol binding and adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A. 72, 3735–3739 (1975).CrossRefPubMedCentralPubMedGoogle Scholar
  17. Klein, D. C., Weiler, J.: Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095 (1970).CrossRefPubMedGoogle Scholar
  18. Klein, D. C., Berg, G. R., Weller, J.: Melatonin synthesis: adenosine 3′, 5′-monophosphate and norepinephrine stimulate N-acetyltransferase. Science 168, 979–980 (1970).CrossRefPubMedGoogle Scholar
  19. Klein, D. C., Weller, J.: The role of N-acetylserotonin in the regulation of melatonin production. Fourth International Congress of Endocrinology, Abstracts. Excerpta Medica Int. Congr. Ser. 256, 52 (1972 a).Google Scholar
  20. Klein, D. C., Weiler, J.: Rapid light-induced decrease in pineal serotonin N-acetyltransferase activity. Science 177, 532–533 (1972 b).CrossRefPubMedGoogle Scholar
  21. Klein, D. C., Weiler, J.: Adrenergic adenosine 3′, 5′-monophosphate regulation of serotonin N-acetyltransferase activity and the temporal relationship of serotonin N-acetyltransferase activity to synthesis of 3H-N-acetylserotonin and 3H-melatonin in cultured rat pineal. J. Pharm. Exp. Ther. 186, 516–527 (1973).Google Scholar
  22. Lefkowitz, R. J., Mukherjee, C., Coverstone, M., Caron, M. G.: Stereo-specific 3H-alprenolol binding sites, β-adrenergic receptors, and adenylate cyclase. Biochem. Biophys. Res. Comm. 60, 703–709 (1974).CrossRefPubMedGoogle Scholar
  23. Lerner, A. B., Case, J. B., Takahashi, Y., Lee, T. H., Mori, W.: Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80, 2587 (1958).CrossRefGoogle Scholar
  24. Lynch, H. J.: Diurnal oscillations in pineal melatonin content. Life Sci. 10, 791–795 (1971).CrossRefGoogle Scholar
  25. Minneman, K. P., Iversen, L. L.: Cholera toxin induces pineal enzymes in culture. Science 192, 803–805 (1976 a).CrossRefPubMedGoogle Scholar
  26. Minneman, K. P., Iversen, L. L.: Diurnal rhythm in rat pineal cyclic nucleotide Phosphodiesterase activity. Nature 260, 59–61 (1976 b).CrossRefPubMedGoogle Scholar
  27. Moore, R. Y., Klein, D. C.: Visual pathways and central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 71, 17–33 (1974).CrossRefPubMedGoogle Scholar
  28. O’Dea, R. F., Zatz, M.: Catecholamine-stimulated cyclic GMP accumulation in the rat pineal: apparent presynaptic site of action. Proc. Natl. Acad. Sci. U.S.A. 73, 3398–3402 (1976).CrossRefPubMedCentralPubMedGoogle Scholar
  29. O’Dea, R. F., Gagnon, C., Zatz, M.: Regulation of cyclic GMP in the rat pineal and posterior pituitary glands. J. Neurochem. (in press, 1978).Google Scholar
  30. Oleshansky, M. A., Neff, N. H.: Rat pineal adenosine cyclic 3′, 5′-mono-phosphate Phosphodiesterase activity: modulation in vivo by a β-adrenergic receptor. Mol. Pharmacol. 11, 552–557 (1975).PubMedGoogle Scholar
  31. Parfitt, A., Weller, J., Klein, D. C.: β-adrenergic blockers decrease adren-ergically stimulated N-acetyltransferase activity in pineal glands in organ culture. Neuropharm. 15, 353–358 (1976).CrossRefGoogle Scholar
  32. Quay, W. B.: Orcadian rhythm in rat pineal serotonin and its modulation by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473–479 (1963).CrossRefGoogle Scholar
  33. Romero, J. A., Axelrod, J.: Pineal β-adrenergic receptor: diurnal variation in sensitivity. Science 184, 1091–1092 (1974).CrossRefPubMedGoogle Scholar
  34. Romero, J. A., Axelrod, J.: Regulation of sensitivity to β-adrenergic stimulation in induction of pineal N-acetyltransferase. Proc. Natl. Acad. Sci. U.S.A. 72, 1661–1665 (1975).CrossRefPubMedCentralPubMedGoogle Scholar
  35. Romero, J. A., Zatz, M., Axelrod, J.: β-adrenergic stimulation of pineal N-acetyltransferase: adenosine 3′, 5′-cyclic monophosphate stimulates both RNA and protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 72, 2107–2111 (1975 a).CrossRefPubMedCentralPubMedGoogle Scholar
  36. Romero, J. A., Zatz, M., Kebabian, J. W., Axelrod, J.: Circadian cycles in binding of 3H-alprenolol to β-adrenergic receptor sites in rat pineal. Nature 258, 435–436 (1975 b).CrossRefPubMedGoogle Scholar
  37. Schultz, G., Hardman, J. G., Schultz, K., Baird, C. E., Sutherland, E. W.: The importance of calcium ions for the regulation of guanosine 3′, 5′-cyclic monophosphate levels. Proc. Natl. Acad. Sci. U.S.A. 70, 3889 to 3893 (1973).CrossRefPubMedCentralPubMedGoogle Scholar
  38. Strada, S. J., Weiss, B.: Increased response to catecholamines of the cyclic AMP system of rat pineal gland induced by decreased sympathetic activity. Arch. Biochem. Biophys. 160, 197–204 (1974).CrossRefPubMedGoogle Scholar
  39. Strada, S. J., Kirkegaard, L., Thompson, W. J.: Studies of rat pineal gland guanylate cyclase. Neuropharmacol. 15, 261–266 (1976).CrossRefGoogle Scholar
  40. Tamarkin, L., Westrom, W. K., H amili, A. I., Goldman, B. D.: Effect of melatonin on the reproductive systems of male and female Syrian hamsters: a diurnal rhythm in sensitivity to melatonin. Endocrinol. 99, 1534–1541 (1976).CrossRefGoogle Scholar
  41. Weiss, B., Costa, E.: Selective stimulation of adenyl cyclase activity in rat pineal by pharmacologically active catecholamines. J. Pharm. Exp. Ther. 161, 310–319 (1968 a).Google Scholar
  42. Weiss, B., Costa, E.: Regional and subcellular distribution of adenyl cyclase and 3′, 5′-cyclic nucleotide Phosphodiesterase in brain and pineal gland. Biochem. Pharmacol. 17, 2107–2116 (1968 b).CrossRefPubMedGoogle Scholar
  43. Weissbach, H., Redfield, B. G., Axelrod, J.: Biosynthesis of melatonin: enzymic conversion of serotonin to N-acetylserotonin. Biochem. Biophys. Acta 43, 352–353 (1960).CrossRefPubMedGoogle Scholar
  44. Winters, K. E., Morrissey, J. J., Loos, P. J., Lovenberg, W.: Pineal protein phosphorylation during serotonin N-acetyltransferase induction. Proc. Natl. Acad. Sci. U.S.A. 74, 1928–1931 (1977).CrossRefPubMedCentralPubMedGoogle Scholar
  45. Wurtman, R. J., Axelrod, J., Kelly, D.: The pineal. New York: Academic Press. 1968.Google Scholar
  46. Wurtman, R. J., Shein, H. M., Larin, F.: Mediation by β-adrenergic receptors of effect of norepinephrine on pineal synthesis of 14C-serotonin and 14C-melatonin. J. Neurochem. 18, 1683–1687 (1971).CrossRefPubMedGoogle Scholar
  47. Zatz, M., O’Dea, R. F.: Regulation of protein kinase in rat pineal: increased Vmax in supersensitivity glands. J. Cyc. Nuc. Res. 2, 427–439 (1976).Google Scholar
  48. Zatz, M., Kebabian, J. W., Romero, J. A., Lefkowitz, R. J., Axelrod, J.: Pineal β-adrenergic receptor: correlation of binding of 3H-alprenolol with stimulation of adenylate cyclase. J. Pharm. Exp. Ther. 196, 714 to 722 (1976 a).Google Scholar
  49. Zatz, M., Romero, J. A., Axelrod, J.: Diurnal variation in requirement for RNA synthesis in the induction of pineal N-acetyltransferase. Biochem. Pharmacol. 25, 903–906 (1976 b).CrossRefPubMedGoogle Scholar
  50. Zatz, M.: Effects of cholera toxin on supersensitive and subsensitive rat pineal glands: regulation of sensitivity at multiple sites. Life Sci. 21, 1267–1276 (1977).CrossRefPubMedGoogle Scholar
  51. Zatz, M., Weinstock, M.: Electric field stimulation releases norepinephrine and cyclic GMP from the rat pineal gland. Life Sci. 22, 767–772 (1978).CrossRefPubMedGoogle Scholar
  52. Zimmerman, N. H., Menaker, M.: Neural connections of sparrow pineal: role in circadian control of activity. Science 190, 477–479 (1975).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • M. Zatz
    • 1
  1. 1.Section on Pharmacology, Laboratory of Clinical ScienceNational Institute of Mental HealthBethesdaUSA

Personalised recommendations