Advertisement

Studies on the Control of Pineal Indole Synthesis: Cyclic Nucleotides, Adenylate Cyclase and Phosphodiesterase

  • M. A. Oleshansky
  • N. H. Neff
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)

Summary

An overview of the biochemical events that occur when postsynaptic pineal beta-adrenergic receptors are stimulated is presented. Emphasis is placed on the importance of the adenylate cyclase system for the induction of N-acetyltransferase (NAT). Super- and subsensitive responses of NAT to receptor agonists are related to cAMP concentration, adenylate cyclase and Phosphodiesterase activities and receptor binding sites.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Axelrod, J., Wurtman, R. J., Snyder, S. H.: Control of hydroxy-O-methyl-transferase activity in the rat pineal gland by environmental lighting. J. Biol. Chem. 240, 949–954 (1965).PubMedGoogle Scholar
  2. Browman, L. R.: Light and its relation to activity and estrous rhythm in the albino rat. J. Exp. Zool. 75, 375–388 (1937).CrossRefGoogle Scholar
  3. Brownstein, M., Axelrod, J.: Pineal gland 24-hour rhythm in norepinephrine turnover. Science 184, 163–165 (1974).CrossRefPubMedGoogle Scholar
  4. Brownstein, M., Holz, R., Axelrod, J.: The regulation of pineal serotonin by a beta-adrenergic receptor. J. Pharmacol. Exp. Ther. 186, 109–113 (1973 a).PubMedGoogle Scholar
  5. Brownstein, M., Saavedra, J. M., Axelrod, J.: Control of pineal n-acetylserotonin by a beta-adrenergic receptor. J. Pharmacol. Exp. Ther. 9, 605–611 (1973 b).Google Scholar
  6. Costa, E., Guidoni, A., Hanbauer, I.: Do cyclic nucleotides promote the trans-synaptic induction of tyrosine hydroxylase. Life Sci. 14, 1169 to 1188 (1974).CrossRefPubMedGoogle Scholar
  7. Deguchi, T.: Role of the beta-adrenergic receptor in the elevation of adenosine cyclic 3′, 5′-monophosphate and induction of serotonin n-acetyltransferase in rat pineal glands. Mol. Pharmacol. 9, 184–190 (1973).PubMedGoogle Scholar
  8. Deguchi, T., Axelrod, J.: Control of circadian change of serotonin N-acetyltransferase activity in pineal organ by the beta-adrenergic receptor. Proc. Natl. Acad. Sci. U.S.A. 69, 2547–2550 (1972 a).CrossRefPubMedCentralPubMedGoogle Scholar
  9. Deguchi, T., Axelrod, J.: Induction and superinduction of serotonin N-acetyltransferase by adrenergic drugs and denervation in rat pineal organ. Proc. Natl. Acad. Sci. U.S.A. 69, 2208–2211 (1972 b).CrossRefPubMedCentralPubMedGoogle Scholar
  10. Deguchi, T., Axelrod, J.: Superinduction of serotonin N-acetyltransferase and supersensitivity of adenyl cyclase to catecholamines in denervated pineal gland. Mol. Pharmacol. 9, 612–618 (1973 a).PubMedGoogle Scholar
  11. Deguchi, T., Axelrod, J.: Supersensitivity and subsensitivity of the beta-adrenergic receptor in pineal gland by catecholamine transmitters. Proc. Natl. Acad. Sci. U.S.A. 70, 2411–2414 (1973 b).CrossRefPubMedCentralPubMedGoogle Scholar
  12. Fiske, V. M., Pound, J., Putman, J.: Effect of light on the weight of the pineal organ in hypophysectomized gonadectomized, adrenalectomized or thiouracil fed rats. Endocrinology 71, 130–133 (1962).CrossRefPubMedGoogle Scholar
  13. Fraschini, F., Collu, R., Martini, L.: Ciba Foundation Symposium on the Pineal Gland (Wolstenholme, E. W., Knight, J., eds.), pp. 259–273. London: Churchill Livingstone. 1971.Google Scholar
  14. Hertting, G.: The fate of 3H-isoproterenol in the rat. Biochem. Pharmacol. 13, 1119–1128 (1964).CrossRefPubMedGoogle Scholar
  15. Kappers, J. A.: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. Z. Zellforsch. Mikrosk. Anat. 52, 163–215 (1960).CrossRefPubMedGoogle Scholar
  16. Kebabian, J. W., Zatz, M., Romero, J. A., Axelrod, J.: Rapid changes in rat pineal beta-adrenergic receptor. Alterations in 1-[3H] alprenolol binding and adenylate cyclase. Proc. Natl. Acad. Sci. U.S.A., 72, 3735–3739 (1975).CrossRefPubMedCentralPubMedGoogle Scholar
  17. Klein, D. C., Weiler, J. L.: Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095 (1970).CrossRefPubMedGoogle Scholar
  18. Klein, D. C., Weiler, J. L.: Rapid light-induced decrease in pineal N-acetyltransferase activity. Science 77, 532–533 (1972).CrossRefGoogle Scholar
  19. Lerner, A. B., Case, J. D., Takahashi, Y.: Isolation of melatonin and 5-methoxyindole-3-acetic acid from bovine pineal gland. J. Biol. Chem. 235, 1992–1997 (1960).PubMedGoogle Scholar
  20. Lynch, H. S.: Diurnal oscillations in pineal melatonin content. Life Sci. 10, 791–795 (1971).CrossRefGoogle Scholar
  21. Minneman, K. P.: Postsynaptic induction of serotonin N-acetyltransferase activity and the control of cyclic nucleotide metabolism in organ culture of the rat pineal. Mol. Pharmacol. 13, 735–745 (1977).PubMedGoogle Scholar
  22. Minneman, K. P., Iversen, L. L.: Diurnal rhythm in rat pineal cyclic nucleotide activity. Nature 260, 59–61 (1976).CrossRefPubMedGoogle Scholar
  23. Minneman, K. P., Iversen, L. L.: Cholera toxin induces pineal enzymes in culture. Science 192, 803–805 (1976).CrossRefPubMedGoogle Scholar
  24. Neff, N. H., Barrett, R. E., Costa, E.: Kinetic and fluorescent histochemical analysis of the serotonin compartments of rat pineal gland. Eur. J. Pharmacol. 5, 348–356 (1969).CrossRefPubMedGoogle Scholar
  25. O’Dea, R. F., Zatz, M.: Catecholamine-stimulated cyclic GMP accumulation in the rat pineal: Apparent presynaptic site of action. Proc. Natl. Acad. Sci. U.S.A. 73, 3398–3402 (1976).CrossRefPubMedCentralPubMedGoogle Scholar
  26. Oleshansky, M. A., Neff, N. H.: On the mechanism of tolerance to isoproterenol induced accumulation of cAMP in rat pineal in vivo. Life Sci. 17, 1429–1432 (1975 a).CrossRefPubMedGoogle Scholar
  27. Oleshansky, M. A., Neff, N. H.: Rat pineal adenosine cyclic 3′, 5′-monophosphate Phosphodiesterase activity; modulation in vivo by a beta-adrenergic receptor. Mol. Pharmacol. 11, 552–557 (1975 b).PubMedGoogle Scholar
  28. Plachino, S., Trendelenburg, U.: The influence of denervation and of decentralization on the alpha and beta effect of isoproterenol on the nictitating membrane of the pithed cat. J. Pharmacol. Exp. Ther. 163, 257 (1968).Google Scholar
  29. Quay, W. R.: Circadian rhythm in rat pineal serotonin and its modification by estrous cycle and photoperiod. Comp. Endoc. 3, 473–479 (1963).CrossRefGoogle Scholar
  30. Reiter, R. J.: The effects of pineal grafts, pinealectomy and denervation of the pineal gland on the reproductive organs of male hamsters. Neuro-endocrinology 2, 138–146 (1967).CrossRefGoogle Scholar
  31. Reiter, R. J., Vaughan, M. K.: Pineal antigonadotrophic substances: Polypeptides and indoles. Life Sci. 21, 159–172 (1977).CrossRefPubMedGoogle Scholar
  32. Romero, J. A., Axelrod, J.: Pineal beta-adrenergic receptor: diurnal variation in sensitivity. Science 184, 1091–1092 (1974).CrossRefPubMedGoogle Scholar
  33. Romero, J. A., Axelrod, J.: Regulation of sensitivity to beta-adrenergic stimulation in induction of pineal N-acetyltransferase. Proc. Natl. Acad. Sci. U.S.A. 72, 5, 1661–1665 (1975).CrossRefPubMedCentralPubMedGoogle Scholar
  34. Romero, J. A., Zatz, M., Kebabian, J. W., Axelrod, J.: Circadian cycles in binding of 3H-alprenolol to beta-adrenergic receptor sites in rat pineal. Nature 258, 435–436 (1975).CrossRefPubMedGoogle Scholar
  35. Romero, J. A., Zatz, M., Axelrod, J.: Beta-adrenergic stimulation of pineal N-acetyltransferase: Adenosine 3′, 5′-cyclic monophosphate stimulates both RNA and protein synthesis. Proc. Natl. Acad. Sci. U.S.A. 72, 2107–2111 (1975).CrossRefPubMedCentralPubMedGoogle Scholar
  36. Shein, H. M., Wurtman, R. J.: Cyclic adenosine monophosphate: Stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science 166, 519–520 (1969).CrossRefPubMedGoogle Scholar
  37. Snyder, S. H., Zweig, M., Axelrod, J., Fisher, J. E.: Control of the circadian rhythm in serotonin content of the rat pineal gland. Proc. Natl. Acad. Sci. U.S.A. 53, 301–305 (1965).CrossRefPubMedCentralPubMedGoogle Scholar
  38. Strada, S. J., Klein, D. C., Weller, J., Weiss, B.: Effect of norepinephrine on the concentration of adenosine 3′, 5′-monophosphate of rat pineal gland in organ culture. Endocrinology 90, 1470–1475 (1972).CrossRefPubMedGoogle Scholar
  39. Strada, S. J., Weiss, B.: Increased response to catecholamines of the cyclic AMP system of rat pineal gland induced by decreased sympathetic activity. Arch. Biochem. Biophys. 160, 197–204 (1974).CrossRefPubMedGoogle Scholar
  40. Taylor, A. N., Wilson, R. W.: Electrophysiological evidence for the action of light on the pineal gland in the rat. Experientia 26, 267–269 (1970).CrossRefPubMedGoogle Scholar
  41. Weiss, B., Costa, E.: Adenyl cyclase activity in rat pineal gland: effects of chronic denervation and norepinephrine. Science 156, 1750–1752 (1967).CrossRefPubMedGoogle Scholar
  42. Weiss, B., Costa, E.: Selective stimulation of adenyl cyclase of rat pineal gland by pharmacologically active catecholamines. J. Pharmacol. Exp. Ther. 161, 311–319 (1968 a).Google Scholar
  43. Weiss, B., Costa, E.: Regional and subcellular distribution of adenyl cyclase and 3′, 5′-cyclic nucleotide Phosphodiesterase in brain and pineal gland. Biochem. Pharmacol. 17, 2107–2116 (1968 b).CrossRefPubMedGoogle Scholar
  44. Weiss, B.: On the regulation of adenylate cyclase activity in the rat pineal gland. Annals of N.Y. Acad. Sci. 185, 507–519 (1971).CrossRefGoogle Scholar
  45. Wurtman, R. J., Axelrod, J., Chu, E. W.: Melatonin, a pineal substance: effect on the rat ovary. Science 141, 277–278 (1963).CrossRefPubMedGoogle Scholar
  46. Wurtman, R. J., Roth, W., Altschule, M. D., Wurtman, J. J.: Interactions of the pineal and exposure to continuous light on organ weights of female rats. Acta Endocrinol. 36, 617–624 (1961).PubMedGoogle Scholar
  47. Yang, H.-Y. T., Neff, N. H.: Hydroxyindole-O-methyltransferase. An immunochemical study of the neural regulation of the pineal enzyme. Mol. Pharmacol. 12, 433–439 (1976).PubMedGoogle Scholar
  48. Yang, H.-Y. T., Costa, E., Majane, E. A., Hong, J.: Phosphoprotein Phosphatase of pineal gland: some properties of the enzyme and the identification of an endogenous activator. J. Neurochem. 28, 1075–1080 (1977).CrossRefPubMedGoogle Scholar
  49. Zatz, M., Romero, J. A., Axelrod, J.: Diurnal variations in the requirement for RNA synthesis in the induction of pineal N-acetyltransferase. Biochem. Pharmacol. 25, 903–906 (1976).CrossRefPubMedGoogle Scholar
  50. Zatz, M., O’Dea, R. F.: Efflux of cyclic nucleotides from rat pineal: release of guanosine 3′, 5′-monophosphate from sympathetic nerve endings. Science 197, 174–176 (1977).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • M. A. Oleshansky
    • 1
  • N. H. Neff
    • 2
  1. 1.Neuropsychopharmacology Research Unit, Department of PsychiatryNew York University Medical CenterNew York CityUSA
  2. 2.Laboratory of Preclinical PharmacologyNational Institute of Mental Health, St. Elizabeths HospitalWashington, D.C.USA

Personalised recommendations