Physiological Control of Melatonin Synthesis and Secretion: Mechanisms Generating Rhythms in Melatonin, Methoxytryptophol, and Arginine Vasotocin Levels and Effects on the Pineal of Endogenous Catecholamines, the Estrous Cycle, and Environmental Lighting

  • R. J. Wurtman
  • Y. Ozaki
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)


Daily rhythms in pineal methoxyindole metabolism have been described in rodents and humans: serotonin levels in rat pineals are highest during the daylight hours and fall markedly soon after the onset of darkness, coincident with increases in the levels of pineal melatonin and 5-methoxy-tryptophol and the activities of pineal serotonin-N-acetyltransferase (SNAT) and hydroxyindole-O-methyltransferase (HIOMT). The fact that the levels of melatonin and 5-methoxytryptophol vary in parallel suggests that the major factor generating the methoxyindole rhythms is not SNAT activity, as has been suggested, but a proximal step, perhaps a change in the availability (for metabolism) of “stored” serotonin. Melatonin levels in human serum and urine exhibit rhythms similar to those observed in rats, i.e., they rise sharply during the daily dark period. When the onset of darkness is delayed by 12 hours, human melatonin rhythms usually require 3 or 4 days to adjust to the new lighting regimen.

Environmental factors, other than light, that activate the sympathetic nervous system or cause epinephrine to be secreted from the adrenal medulla (e.g., the stress of immobilization; insulin-induced hypoglycemia) can override the inhibitory effects of light and accelerate melatonin synthesis. Melatonin levels in rat blood and urine are lowest during the proestrous and estrous phases of the estrous cycle. Although this effect of the ovarian steroid hormones is accompanied by a reduction in urinary norepinephrine levels, it is not caused simply by a decrease in the quantity of norepinephrine acting on the pineal but also involves a direct action of the hormones.

Ovariectomy increases serum melatonin levels, whereas the administration of estradiol plus progesterone (to ovariectomized animals) lowers melatonin levels.

The spectral and intensity-response characteristics of the photic inhibition of melatonin synthesis have been established for the rat. Rhythms in melatonin synthesis apparently persist among animals placed in environments of continuous darkness; the source of the cyclic signal (mediated by the pineal sympathetic nerves) has not yet been identified.

Preliminary evidence suggests that levels of a peptide hormone, arginine vasotocin, in rat pineals and sera also exhibit daily rhythms and are increased by norepinephrine.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arendt, J., Pannier, L., Sizonenko, P. C.: Melatonin radioimmunoassay. J. Clin. Endocrinol. Metab. 40, 347–350 (1975).CrossRefPubMedGoogle Scholar
  2. Axelrod, J., Wurtman, R. J., Snyder, S. H.: Control of hydroxyindole-O-methyltransferase activity in the rat pineal gland by environmental lighting. J. Biol. Chem. 240, 949–954 (1965).PubMedGoogle Scholar
  3. Axelrod, J., Shein, H. M., Wurtman, R. J.: Stimulation of 14C-melatonin synthesis from 14C-tryptophan by noradrenaline in rat pineal in organ culture. Proc. Natl. Acad. Sci. U.S.A. 62, 544–549 (1969).CrossRefPubMedCentralPubMedGoogle Scholar
  4. Cardinali, D. P., Larin, F., Wurtman, R. J.: Action spectra for effects of light on hydroxyindole-O-methyltransferase in rat pineal, retina and harderian gland. Endocrinology 91, 877–886 (1971).CrossRefGoogle Scholar
  5. Cardinali, D. P., Lynch, H. J., Wurtman, R. J.: Binding of melatonin to human and rat plasma proteins. Endocrinology 91, 1213–1218 (1972).CrossRefPubMedGoogle Scholar
  6. Cheesman, D. W., Fariss, B. L.: Isolation and characterization of a gonadotropin-inhibiting substance from bovine pineal gland. Proc. Soc. Exp. Biol. Med. 133, 1254–1256 (1970).CrossRefPubMedGoogle Scholar
  7. Fisher, L., Cusack, M. B., Fernstrom, J. D.: Development of a new radioimmunoassay for arginine vasotocin. Neuroscience Abstract 3, 344 (1977).Google Scholar
  8. Hedlund, L., Lischko, M. M., Rollag, M. D., Niswender, G. D.: Melatonin: daily cycle in plasma and cerebrospinal fluid of calves. Science 195, 686–687 (1977).CrossRefPubMedGoogle Scholar
  9. Hirata, F., Hayaishi, O., Tokuyama, T., Seno, S.: In vitro and in vivo formation of two new metabolites of melatonin. J. Biol. Chem. 249, 1311–1313(1974).PubMedGoogle Scholar
  10. Jimerson, D. C., Lynch, H. J., Post, R. M., Wurtman, R. J., Bunney, W. E.: Urinary melatonin rhythms during sleep deprivation in depressed patients and normals. Life Sci. 20, 1501–1508 (1977).CrossRefPubMedGoogle Scholar
  11. Klein, D. C., Berg, G. R.: Pineal gland: stimulation of melatonin production by norepinephrine involves cyclic AMP mediated stimulation of N-acetyltransferase. Adv. Biochem. Psychopharmacol. 3, 241–263 (1970).PubMedGoogle Scholar
  12. Klein, D. C., Berg, G. R., Weiler, J., Glinsman, W.: Pineal gland: dibutyryl cyclic adenosine monophosphate stimulation of labeled melatonin production. Science 167, 1738–1740 (1970).CrossRefPubMedGoogle Scholar
  13. Klein, D. C., Weiler, J. R.: Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095 (1970).CrossRefPubMedGoogle Scholar
  14. Lynch, H. J., Eng, J. P., Wurtman, R. J.: Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting. Proc. Natl. Acad. Sci. U.S.A. 70, 1704–1707 (1973 a).CrossRefPubMedCentralPubMedGoogle Scholar
  15. Lynch, H. J., Wang, P., Wurtman, R. J.: Increase in rat pineal melatonin content following L-dopa administration. Life Sci. 12, 145–151 (1973 b).CrossRefGoogle Scholar
  16. Lynch, H. J., Wurtman, R. J., Moskowitz, M. A., Archer, M. C., Ho, M. H.: Daily rhythm in human urinary melatonin. Science 187, 169 (1975 a).CrossRefPubMedGoogle Scholar
  17. Lynch, H. J., Ozaki, Y., Shakal, D., Wurtman, R. J.: Melatonin excretion of man and rats: effects of time of day, sleep, pinealectomy and food consumption. Int. J. Biometeorol. 19, 267–279 (1975 b).CrossRefPubMedGoogle Scholar
  18. Lynch, H. J., Ho, M., Wurtman, R. J.: The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress, but not that caused by exposure to darkness. J. Neural Transm. 40, 87–97 (1977 a).CrossRefPubMedGoogle Scholar
  19. Lynch, H. J., Ozaki, Y., Wurtman, R. J.: Unpublished observations (1977 b).Google Scholar
  20. Minneman, K. P., Lynch, H. J., Wurtman, R. J.: Relationship between environmental light intensity and retina-mediated suppression of rat pineal serotonin-N-acetyltransferase. Life Sci. 15, 1791–1796 (1974).CrossRefPubMedGoogle Scholar
  21. Ozaki, Y., Lynch, H. J.: Presence of melatonin in plasma and urine of pinealectomized rats. Endocrinology 99, 641–644 (1976).PubMedGoogle Scholar
  22. Ozaki, Y., Lynch, H. J., Wurtman, R. J.: Melatonin in rat pineal, plasma, and urine: 24-hour rhythmicity and effect of chlorpromazine. Endocrinology 98, 1418–1424 (1976).CrossRefPubMedGoogle Scholar
  23. Ozaki, Y., Wurtman, R. J., Alonso, R., Lynch, H. J.: Melatonin secretion decreases during the proestrous stage of the rat estrous cycle. Proc. Natl. Acad. Sci. U.S.A. 75, 531–534 (1977).CrossRefGoogle Scholar
  24. Pavel, S., Petrescu, S.: Inhibition of gonadotropin by a highly purified pineal peptide and by synthetic arginine vasotocin. Nature 212, 1054 to 1055 (1966).CrossRefPubMedGoogle Scholar
  25. Quay, W. B.: Circadian rhythms in rat pineal serotonin and its modification by estrous cycle and photoperiod. Gen. Comp. Endocrinol. 3, 473–479 (1963).CrossRefGoogle Scholar
  26. Ralph, C. L., Lynch, H. J.: A quantitative melatonin bioassay. Gen. Comp. Endocrinol. 15, 334–338 (1970).CrossRefPubMedGoogle Scholar
  27. Ralph, C. L., Mull, D., Lynch, H. J., Hedlund, L.: A melatonin rhythm persists in rat pineals in darkness. Endocrinology 89, 1361–1366 (1971).CrossRefPubMedGoogle Scholar
  28. Rollag, M. D., Niswender, G. D.: Radioimmunoassay of serum concentrations of melatonin in sheep exposed to different lighting regimens. Endocrinology 98, 482–489 (1976).CrossRefPubMedGoogle Scholar
  29. Shein, H. M., Wurtman, R. J.: Cyclic adenosine monophosphate: stimulation of melatonin and serotonin synthesis in cultured rat pineals. Science 166, 519–520 (1969).CrossRefPubMedGoogle Scholar
  30. Shein, H. M., Wurtman, R. J., Axelrod, J.: Synthesis of serotonin by pineal gland of the rat in organ culture. Nature 213, 730–731 (1967).CrossRefPubMedGoogle Scholar
  31. Smith, I., Mullen, P. E., Silman, R. E., Snedden, W., Wilson, B. W.: Absolute identification of melatonin in human plasma and cerebrospinal fluid. Nature 260, 718–719 (1976).CrossRefGoogle Scholar
  32. Wilson, B.: Application of mass spectrometry to study of the pineal gland. Proceedings, International Symposium on the Pineal Gland (Jerusalem, 1977). Wien-New York: Springer. 1978.Google Scholar
  33. Wilson, B. W., Snedden, W., Silman, R. E., Smith, I., Mullen, P.: A gas chromatographic-mass spectrometry method for the quantitative analysis of melatonin in plasma and cerebrospinal fluid. Analyt. Biochem. 81, 283–291 (1977).CrossRefPubMedGoogle Scholar
  34. Wilson, B., Lynch, H. J., Ozaki, Y.: Paper in preparation.Google Scholar
  35. Wurtman, R. J., Axelrod, J., Phillips, L. S.: Melatonin synthesis in the pineal gland: control by light. Science 142, 1071–1073 (1963).CrossRefPubMedGoogle Scholar
  36. Wurtman, R. J., Axelrod, J., Kelly, D. E.: The Pineal. New York: Academic Press. 1968 a.Google Scholar
  37. Wurtman, R. J., Larin, F., Axelrod, J., Shein, H. M., Rosasco, K.: Formation of melatonin and 5-hydroxyindole acetic acid from 14C-tryptophan by rat pineal glands in organ culture. Nature 217, 953–954 (1968 b).CrossRefPubMedGoogle Scholar
  38. Wurtman, R. J., Shein, H. M., Axelrod, J., Larin, F.: Incorporation of 14C-tryptophan into 14C-protein by cultured rat pineals: stimulation by L-norepinephrine. Proc. Natl. Acad. Sci. U.S.A. 62, 749–755 (1969).CrossRefPubMedCentralPubMedGoogle Scholar
  39. Wurtman, R. J., Shein, H. M., Larin, F.: Mediation by β-adrenergic receptors of effect of norepinephrine on pineal synthesis of 14C-serotonin and 14C-melatonin. J. Neurochem. 18, 1683–1687 (1971).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • R. J. Wurtman
    • 1
  • Y. Ozaki
    • 1
  1. 1.Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations