Advertisement

Neural Control of Pineal Function in Mammals and Birds

  • R. Y. Moore
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)

Summary

Pineal function in mammals is regulated by a system with four major neural components. The first is a retinohypothalamic projection from the ganglion cells of the retina to the suprachiasmatic nucleus of the hypothalamus. The suprachiasmatic nucleus appears to function as a circadian oscillating system projecting into the hypothalamus and this represents the second component. The third component is constituted of a brainstem pathway from the lateral hypothalamus to the intermediolateral cell column of the upper thoracic spinal cord. The fourth component is the preganglionic and postganglionic sympathetic system arising from the upper thoracic cord to innervate the superior cervical ganglion which, in turn, innervates the pineal gland. No direct neural control of the pineal gland has been demonstrated in birds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arstila, A. U.: Electron microscopic studies on the structure and histochemistry of the pineal gland of the rat. Neuroendocrinology Suppl. 6, 2, 1–101 (1967).CrossRefGoogle Scholar
  2. Axelrod, J., Snyder, S. H., Heller, A., Moore, R. Y.: Light-induced changes in pineal hydroxyindole-O-methyltransferase: abolition by lateral hypo-thalamic lesions. Science 154, 898–899 (1966).CrossRefPubMedGoogle Scholar
  3. Hayhow, W. R., Webb, C., Jervie, A.: The accessory optic system in the rat. J. Comp. Neurol. 115, 187–215 (1960).CrossRefPubMedGoogle Scholar
  4. Hayhow, W. R., Sefton, A., Webb, C.: Primary optic centers in the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. J. Comp. Neurol. 118, 295–322 (1962).CrossRefPubMedGoogle Scholar
  5. Heller, A., Harvey, J. A., Moore, R. Y.: A demonstration of a fall in brain serotonin following central nervous system lesions in the rat. Biochem. Pharmacol. 11, 859–866 (1962).CrossRefPubMedGoogle Scholar
  6. Heller, A., Moore, R. Y.: Effect of central nervous system lesions on brain monoamines in the rat. J. Pharmacol, exp. Therap. 150, 1–9 (1965).Google Scholar
  7. Herbute, S., Boyle, J. B.: Pineal multiunit activity in conscious quail: Effects of light, blinding and ganglionectomy. Amer. J. Physiol. 231, 136–141 (1976).PubMedGoogle Scholar
  8. Kappers, J. A.: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. The Structure and Function of the Epiphysis Cerebri. Amsterdam: Elsevier. 1965.Google Scholar
  9. Kappers, J. A.: The mammalian pineal gland, a Survey. Acta neurochirurgica 34, 109–149 (1976).CrossRefPubMedGoogle Scholar
  10. Klein, D. C.: Circadian rhythms in indole metabolism in the rat pineal gland. The Neurosciences—Third Study Program. Cambridge: MIT Press. 1974.Google Scholar
  11. Klein, D. C., Weiler, J. L.: Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095 (1970).CrossRefPubMedGoogle Scholar
  12. Klein, D. C., Weiler, J. L., Moore, R. Y.: Melatonin metabolism: neural regulation of pineal serotonin-acetyltransferase activity. Proc. Nat. Acad. Sci. 68, 3107–3110 (1971).CrossRefPubMedCentralPubMedGoogle Scholar
  13. Moore, R. Y.: Retinohypothalamic projection in mammals: a comparative study. Brain Res. 49, 403–409 (1973).CrossRefPubMedGoogle Scholar
  14. Moore, R. Y.: Central neural control of circadian rhythms (Frontiers in Neuroendocrinology, Vol. 5), pp. 185–206. New York: Raven Press. 1978.Google Scholar
  15. Moore, R. Y., Lenn, N. J.: A retinohypothalamic projection in the rat. J. Comp. Neurol. 146, 1–14 (1972).CrossRefPubMedGoogle Scholar
  16. Moore, R. Y., Klein, D. C.: Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 71, 17–33 (1974).CrossRefPubMedGoogle Scholar
  17. Moore, R. Y., Eichler, V. B.: Central neural mechanisms in diurnal rhythm regulation and neuroendocrine responses to light. Psychoneuroendo-crinology 1, 265–279 (1976).CrossRefGoogle Scholar
  18. Moore, R. Y., Rapport, R. L.: Pineal and gonadal function in the rat following cervical sympathectomy. Neuroendocrinology 7, 361–374 (1971).CrossRefPubMedGoogle Scholar
  19. Moore, R. Y.: The innervation of the mammalian pineal gland. In: The Pineal Gland and Reproduction (Reiter, R. J., ed.), pp. 3–30. Basel: Karger. 1978.Google Scholar
  20. Moore, R. Y., Heller, A., Wurtman, R. J., Axelrod, J.: Visual pathway mediating pineal response to environmental light. Science 155, 220–223 (1967).CrossRefPubMedGoogle Scholar
  21. Moore, R. Y., Heller, A., Bhatnager, R. K., Wurtman, R. J., Axelrod, J.: Central control of the pineal gland. Arch. Neurol. (Chicago) 18, 208 to 218 (1968).CrossRefGoogle Scholar
  22. Quay, W. B.: Circadian rhythm in rat pineal serotonin and its modifications by estrous cycle and photoperiods. Gen. Comp. Endocrinol. 3, 473–479 (1963).CrossRefGoogle Scholar
  23. Ralph, C. L., Binkley, S., MacBride, S. E., Klein, D. C.: Regulation of pineal rhythms in chickens: Effects of blinding, constant light, constant dark and superior cervical ganglionectomy. Endocrinol. 97, 1373–1378 (1975).CrossRefGoogle Scholar
  24. Reiter, R. J., Fraschini, F.: Endocrine aspects of the mammalian pineal gland: a review. Neuroendocrinology 5, 219–255 (1969).CrossRefPubMedGoogle Scholar
  25. Saper, C. B., Loewy, A. D., Swanson, L. W., Cowan, W. M.: Direct hypo-thalamo-autonomic connections. Brain Res. 117, 305–312 (1976).CrossRefPubMedGoogle Scholar
  26. Snyder, S. H., Axelrod, J.: Circadian rhythm in pineal serotonin: effect of monoamine oxidase inhibition and reserpine. Science 149, 542–544 (1965).CrossRefPubMedGoogle Scholar
  27. Swanson, L. W., Cowan, W. M.: The efferent connections of the supra-chiasmatic nucleus of the hypothalamus. J. Comp. Neurol. 160, 1–12 (1975).CrossRefPubMedGoogle Scholar
  28. Szentagothai, J., Flerko, B., Mess, B., Halasz, B.: Hypothalamic control of the anterior pituitary. Budapest: Akadémiai Kiado. 1968.Google Scholar
  29. Wartenberg, H.: The mammalian pineal organ: Electron microscopic studies on the fine structure of pinealocytes, glial cells and the perivascular compartment. Z. Zellforsch. 86, 74–97 (1968).CrossRefPubMedGoogle Scholar
  30. Wurtman, R. J., Axelrod, J., Phillips, L. S.: Melatonin synthesis in the pineal gland. Control by light. Science 142, 1071–1073 (1963).CrossRefPubMedGoogle Scholar
  31. Wurtman, R. J., Axelrod, J., Fischer, J. E.: Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143, 1329–1330 (1964).CrossRefGoogle Scholar
  32. Wurtman, R. J., Axelrod, J., Kelly, D. E.: The pineal. New York: Academic Press. 1968.Google Scholar
  33. Zimmerman, N. H.: Organization within the circadian system of the house sparrow: Hormonal coupling and the location of the circadian oscillator. Unpublished Ph.D. Dissertation, University of Texas, Austin, 1976.Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • R. Y. Moore
    • 1
  1. 1.Department of Neurosciences M-008University of California at San DiegoLa JollaUSA

Personalised recommendations