Cytology of the Pineal Gland: Changes Produced by Various Treatments

  • C. L. Ralph
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)


The cytological appearance of the pineal body is related to stage of development or age, time of day, exposure to illumination, season of the year, and reproductive state. Experimental manipulations that alter the normal cytology of the pineal include hypophysectomy, administration of any of several hormones or drugs, blinding, denervation and exposure to stressful influences such as heat or cold.

The effects of blinding are similar to the effects of continuous darkness on the pineal’s cytology. Ultrastructural examinations reveal a number of changes in the organelles, especially an increased number of vesicles and complex membranous whorls. These features suggest heightened activity and generally are coincident with sexual quiescence. Membranous whorls also may be induced by cold exposure.

Prolonged or continuous illumination leads to a reduction in the size of pinealocytes and to changes in their organelles that suggest reduced activity. Such alterations can often be correlated with heightened sexual activity. Sympathetic denervation of pineal glands also results in atrophy of the pinealocytes.

Reproductive condition is reflected in the appearance of the pinealocytes. The estrous cycle, pregnancy, castration and the administration of gonado-tropins or gonadal steroids affect pinealocyte structure. A feedback system involving the gonads and pineal gland is indicated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barratt, G. F., Nadakavukaren, M. J., Frehn, J. L.: Effect of melatonin implants on gonadal weights and pineal gland fine structure of the golden hamster. Tissue Cell 9, 335–345 (1977).PubMedGoogle Scholar
  2. Blumfield, M., Tapp, E.: Measurements. of pineal parenchymal cells and their nuclei in the albino rat at different ages. Acta Morphol. Neerl.-Scand. 8, 1–8 (1970).PubMedGoogle Scholar
  3. Bondareff, W.: Electron microscope study of the pineal body in aged rats. J. Gerontol. 20, 321–327 (1965).Google Scholar
  4. Bostelmann, W.: Der Einfluß der bilateralen Kastration auf die Feinstruktur der Zirbeldrüse. Endokrinologie 54, 56–65 (1969).PubMedGoogle Scholar
  5. Bucana, C. D., Nadakavukaren, M. J., Frehn, J. L.: Ultrastructural features of the pineal gland from cold-exposed golden hamsters. J. Neurocytol. 2, 237–247 (1973).PubMedGoogle Scholar
  6. Campbell, E., Gibson, M. A.: A histological and histochemical study of the development of the pineal gland in the chick, Gallus domesticus. Can. J. Zool. 48, 1321–1328 (1970).PubMedGoogle Scholar
  7. Clabough, J. W.: Ultrastructural features of the pineal gland in normal and light deprived golden hamsters. Z. Zeilforsch. 114, 151–164 (1971).Google Scholar
  8. Clementi, F., Fraschini, F., Müller, E., Zanoboni, A.: The pineal gland and the control of electrolyte balance and of gonadotropic secretion: functional and morphological observations. Progr. Brain Res. 10, 585–603 (1965).Google Scholar
  9. Collin, J. P.: Differentiation and regression of the cells of the sensory line in the epiphysis cerebri. In: The Pineal Gland (Wolstenholme, G. E. W., Knight, J., eds.), pp. 79–120. Edinburgh-London: Churchill Livingstone. 1971.Google Scholar
  10. Das Gupta, T. K.: Cellular hypertrophy in rat pineals after castration. J. Endocrinol. 41, 607–608 (1968).PubMedGoogle Scholar
  11. Deussen-Schmitter, M., Garweg, G., Schwabedal, P. E., Wartenberg, H.: Simultaneous changes of the perivascular contact area and HIOMT activity in the pineal organ after bilateral adrenalectomy in the rat. Anat. Embryol. 149, 297–305 (1976).PubMedGoogle Scholar
  12. Doskočil, M.: Contribution to study of development of the chick embryo epiphysis cerebri. Folio Morph. 23, 247–255 (1975).Google Scholar
  13. Duffy, P. E., Markesbery, W. R.: Granulated vesicles in sympathetic nerve endings in the pineal gland: Observations on the effects of pharmacologic agents by electron microscopy. Am. J. Anat. 128, 97–116 (1970).PubMedGoogle Scholar
  14. Freine, F., Cardinali, D. P.: Effects of melatonin treatment and environmental lighting on the ultrastructural appearance, melatonin synthesis, norepinephrine turnover and microtubule protein content of the rat pineal gland. J. Neural Transm. 37, 237–257 (1975).Google Scholar
  15. Fuji, E.: Ultrastructure of the pineal body of the domestic chicken, with special reference to the changes induced by altered photoperiods. Arch. Histol. Jap. 29, 271–303 (1968).Google Scholar
  16. Gonzales, G., Alvarez-Uria, M., Peydro, A., Rodrigo, J.: Modificaciones en la ultrastructura de la gianduia pineal resultantes de la oftal-moenucleacion bilateral. Bol. Real. Soc. Espan. Hist. Natur. Secc. Biol. 67, 193–197 (1969).Google Scholar
  17. Grunewald-Lowenstein, M.: Influence of light and darkness on the pineal body in Astyanax mexicanus (Filippi). Zoologica 41, 119–128 (1959).Google Scholar
  18. Gusek, W.: Die Feinstruktur der Rattenzirbel und ihr Verhalten unter Ein-fluß von Antiandrogen und nach Kastration. Endokrinologie 67, 129–151 (1976).PubMedGoogle Scholar
  19. Hafeez, M. A., Quay, W. B.: Histochemical and experimental studies of 5-hydroxytryptamine in pineal organs of teleosts (Salmo gairdneri and Atherinopsis californiensis). Gen. Comp. Endocrinol. 13, 211–217 (1969).PubMedGoogle Scholar
  20. Halaris, A., Matussek, N.: Effect of continuous illumination on mitochondria of the rat pineal body. Experientia 25, 486–487 (1969).PubMedGoogle Scholar
  21. Hedlund, L.: Sympathetic innervation of the avian pineal body. Anat. Rec. 166, 406 (1970).Google Scholar
  22. Hedlund, L., Nalbandov, A. V.: Innervation of the avian pineal body. Am. Zool. 9, 1090 (1969).Google Scholar
  23. Henrickson, A. E., Kelly, D. E.: Development of the amphibian pineal organ: cell proliferation and migration. Anat. Rec. 165, 211–228 (1969).Google Scholar
  24. Ito, T., Matsushima, S.: Effects of gonadectomy and hypophysectomy on the pineal body of the mouse: a quantitative morphological study. Anat. Rec. 162, 479–482 (1968).PubMedGoogle Scholar
  25. Iturriza, F. C.: Histochemical demonstration of biogenic monoamines in the pineal gland of the toad, Bufo arenarum. J. Histochem. Cytochem. 15, 301–303 (1967).PubMedGoogle Scholar
  26. Japha, J. L., Eder, T. J., Goldsmith, E. D.: Calcified inclusions in the superficial pineal gland of the mongolian gerbil, Meriones unguiculatus. Acta Anat. 94, 533–544 (1976).PubMedGoogle Scholar
  27. Johnson, J. R., Meyer, P. A. R., Westaby, D. A., Herbert, J.: The autonomie nerve supply to the ferret’s pineal gland studied by electron microscopy. J. Anat. 118, 491–506 (1974).PubMedCentralPubMedGoogle Scholar
  28. Juillard, M. T., Collin, J. P.: L’organe pinéal aviaire: étude ultracyto-chimique et pharmacologique d’un “pool” granulaire de 5-hydroxytryptamine chez la Perruche (Melopsittacus undulatus, Shaw). J. Micro. Biol. Cell 26, 133–138 (1976).Google Scholar
  29. Juillard, M. T., Hartwig, H. G., Collin, J. P.: The avian pineal organ. Distribution of endogenous monoamines; a fluorescence microscopic, microspectrofluorimetric and pharmacological study in the parakeet. J. Neural Transm. 40, 269–287 (1977).PubMedGoogle Scholar
  30. Kachi, T., Matsushima, S., Ito, T.: Diurnal changes in glycogen content in the pineal cells of the male mouse: A quantitative histochemical study. Z. Zellforsch. 118, 310–314 (1971 a).PubMedGoogle Scholar
  31. Kachi, T., Matsushima, S., Ito, T.: Effects of continuous lighting on glycogen in the pineal cells of the mouse: A quantitative histochemical study. Z. Zellforsch. 118, 214–220 (1971 b).PubMedGoogle Scholar
  32. Kachi, T., Matsushima, S., Ito, T.: Effect of continuous darkness on diurnal rhythm in glycogen content in pineal cells of the mouse: A semi-quantitative histochemical study. Anat. Rec. 179, 405–410 (1974).PubMedGoogle Scholar
  33. Kacbi, T., Matsushima, S., Ito, T.: Postnatal observations on the diurnal rhythm and the light-responsiveness in the pineal glycogen content in mice. Anat. Rec. 183, 39–46 (1975).Google Scholar
  34. Kappers, J. Ariëns: Survey of the innervation of the epiphysis cerebri and the accessory pineal organs of vertebrates. Progr. Brain Res. 10, 87–151 (1965).Google Scholar
  35. Kappers, J. Ariëns: The mammalian pineal gland, a survey. Acta Neurochir. 34, 109–146 (1976).PubMedGoogle Scholar
  36. Karasek, M.: The influence of hypophysectomy on the ultrastructure of the pineal gland in white rats. (Preliminary investigations.) Acta Med. Pol. 12, 153–156 (1971 a).PubMedGoogle Scholar
  37. Karasek, M.: Ultrastructure of the epiphysis in white rats under normal conditions and after hypophysectomy. Polish Endocrinol. 22, 13–26 (1971 b).Google Scholar
  38. Karasek, M.: Ultrastructure of the rat pineal gland in organ culture; influence of norepinephrine, dibutyryl cyclic adenosine 3′, 5′-mono-phosphate and adenohypophysis. Endokrinologie 64, 106–114 (1974).PubMedGoogle Scholar
  39. Karasek, M.: Quantitative changes in number of “synaptic” ribbons in rat pinealocytes after orchidectomy and in organ culture. J. Neural Transm. 38, 149–157 (1976).PubMedGoogle Scholar
  40. Karasek, M., Pawlikowski, M., Kappers, J. Ariëns, Stqpień, H.: Influence of castration followed by administration of LH-RH on the ultrastructure of rat pinealocytes. Cell Tiss. Res. 167, 325–339 (1976 a).Google Scholar
  41. Karasek, M., Pawlikowski, M., Pevet, P., Stqpień, H.: Ultrastructural and fluorescence histochemical studies of the rat pineal gland after castration. Ann. Med. Sect. Pol. Acad. Sci. 21, 1–2 (1976 b).Google Scholar
  42. Kerenyi, N. A., von Westarp, C.: Post-natal transformation of the pineal gland: effect of constant darkness. Endocrinology 88, 1077–1079 (1971).Google Scholar
  43. Krstic, R.: Die Einwirkung von Kälte auf mit Zinkjodid-Osmiumtetroxyd reagierende synaptische Bläschen in den Nierenendigungen im Corpus pineale der Ratte. Z. Anat. Entwicklungsgesch. 135, 301–306 (1972).PubMedGoogle Scholar
  44. Legait, H., Roux, M., Dussart, G., Richoux, J. P., Contet-Audonneau, J. L.: Données morphométriques sur la glande pinéale du Loir (Glis glis) et du Lérot (Eliomys quercinus) au cours du cycle annuel. C.R. Soc. Biol. 169, 132 (1975).Google Scholar
  45. Lin, H.-S., Hwang, B.-H., Tseng, C.-Y.: Fine structural changes in the hamster pineal gland after blinding and superior cervical ganglionectomy. Cell Tiss. Res. 158, 285–299 (1975).Google Scholar
  46. Lincoln, G. A.: Seasonal changes in the pineal gland related to the reproductive cycle in the male hare, Lepus europaeus. J. Reprod. Fert. 46, 489–491 (1976).Google Scholar
  47. Lues, G.: The fine structure of the pineal gland of normal, pregnant and experimentally affected guinea-pigs. Z. Zellforsch. 114, 38–60 (1971).PubMedGoogle Scholar
  48. Lupulescu, A.: Ultrastructure of the pineal gland after hypophysectomy. Experientia 24, 482–484 (1968).PubMedGoogle Scholar
  49. Machado, A. B. M.: Electron microscopy of developing sympathetic fibers in the rat pineal body. The formation of granular vesicles. Progr. Brain Res. 34, 171–185 (1971).Google Scholar
  50. Machado, C. R. S., Wragg, L. E., Machado, A. B. M.: A histochemical study of sympathetic innervation and 5-hydroxytryptamine in the developing pineal body of the rat. Brain Res. 8, 310–318 (1968).PubMedGoogle Scholar
  51. Milcou, S. M., Postelnicou, D.: L’influence de l’illumination prolongée sur la structure de l’épiphyse chez canard. Rev. Roumaine Endocrinol. 1, 175–177 (1964).Google Scholar
  52. Miline, R., Devecerski, V., Krstic, R.: Effets des stimuli auditifs sur la glande pinéale de la chauvesouris en hibernation. Acta Anat., Suppl. 56, 73, 293–300 (1969).Google Scholar
  53. Miline, R., Devecerski, V., Sijacki, N., Krstic, R.: Pineal gland behaviour as affected by cold. Hormones 1, 321–331 (1970).PubMedGoogle Scholar
  54. Miline, R., Krstic, R., Devecerski, V.: Sur le comportement de la glande pineale dans des conditions de stress. Acta Anat. 71, 352–402 (1968).PubMedGoogle Scholar
  55. Mogler, R. K.-H.: Das endokrine System des syrischen Goldhamsters unter Berücksichtigung des natürlichen und experimentellen Winterschlafs. Z. Morph. Oekol. Tiere 47, 267–308 (1958).Google Scholar
  56. Muta, W. M. J.: Development and cytological study of the pineal body of coturnix quail. M.S. Thesis, University of Pittsburgh, 1965.Google Scholar
  57. Nir, I., Hirschmann, N., Sulman, F. G.: Diurnal rhythms of pineal nucleic acids and protein. Neuroendocrinology 7, 271–277 (1971).PubMedGoogle Scholar
  58. Nir, I., Hirschmann, N., Sulman, F. G.: Pineal gland changes of rats exposed to heat. Experientia 28, 701–702 (1972).PubMedGoogle Scholar
  59. Omura, Y.: Influence of light and darkness on the ultrastructure of the pineal organ in the blind cave fish, Astyanax mexicanus. Cell Tiss. Res. 160, 99–112 (1975).Google Scholar
  60. Owman, Ch.: Localization of neuronal and parenchymal monoamines under normal and experimental conditions in the mammalian pineal gland. Progr. Brain Res. 10, 423–453 (1965).Google Scholar
  61. Pellegrino de Iraldi, A., de Robertis, E.: Action of reserpine, iproniazid and pyrogallol on nerve endings of the pineal gland. Int. J. Neuro-pharmacol. 2, 231–239 (1963).Google Scholar
  62. Pellegrino de Iraidi, A., Suburo, A. M.: Effect of tyramine on the compartments of the granulated vesicles in rat pineal nerve endings. Eur. J. Pharmacol. 19, 251–259 (1972).Google Scholar
  63. Pevet, P., Saboureau, M.: L’épiphyse du Hérisson (Erinaceus europaeus L.) male. I. Les pinéalocytes et leur variations ultrastructurales considerées au cours du cycle sexuel. Z. Zellforsch. 143, 367–385 (1973).PubMedGoogle Scholar
  64. Pevet, P., Saboureau, M.: Effect of serotonin administration on the ultra-structure of pinealocytes during the period of maximal sexual activity of the male hedgehog (Erinaceus europaeus L.). Experientia 30, 1069 to 1070 (1974).PubMedGoogle Scholar
  65. Pevet, P., Smith, A. R.: The pineal gland of the mole (Talpa europaea L.). II. Ultrastructural variations observed in the pinealocytes during different parts of the sexual cycle. J. Neural Transm. 36, 227–248 (1975).PubMedGoogle Scholar
  66. Pevet, P., Smith, A. R., van de Kar, L., van Bronswijk, H.: Effect of castration on the rat pineal gland. A fluorescence histochemical and biochemical study. Experientia 31, 1237–1238 (1975).PubMedGoogle Scholar
  67. Pflügfelder, O.: Physiologie der Epiphyse. Verh.-dtsch. Zool. Gesell. 50, 53–75 (1956).Google Scholar
  68. Popova, N. K., Kolaeva, S. G., Dianova, I. I.: State of the pineal gland during hibernation. Bull. exp. Biol. Med. (USSR) 79, 467–468 (1975).Google Scholar
  69. Quay, W. B.: Volumetric and cytologic variation in the pineal body of Peromyscus leucopus (Rodentia) with respect to sex, captivity and day-length. J. Morph. 98, 471–495 (1956).Google Scholar
  70. Quay, W. B.: Reduction of mammalian pineal weight and lipid during continuous light. Gen. Comp. Endocrinol. 1, 211–217 (1961).PubMedGoogle Scholar
  71. Quay, W. B.: Histological structure and cytology of the pineal organ in birds and mammals. Progr. Brain Res. 10, 49–86 (1965).Google Scholar
  72. Quay, W. B.: The role of the pineal gland in environmental adaptation. In: Physiology and Pathology of Adaptation Mechanisms (Bajusz, E., ed.), pp. 508-550. 1969.Google Scholar
  73. Quay, W. B.: Pineal Chemistry. Springfield: Ch. C Thomas. 1974.Google Scholar
  74. Quay, W. B.: Pineal caniculi: demonstration, twenty-four-hour rhythmicity and experimental modification. Am. J. Anat. 139, 81–94 (1974 b).PubMedGoogle Scholar
  75. Quay, W. B.: Seasonal cycle and physiological correlates of pinealocyte nuclear and nucleolar diameters in the bats, Myotis lucifugus and Myotis sodalis. Gen. Comp. Endocrinol. 29, 369–375 (1976).PubMedGoogle Scholar
  76. Quay, W. B., Renzoni, A.: Comparative and experimental studies of pineal structure and cytology in passeriform birds. Riv. Biol. 56, 363–407 (1963).PubMedGoogle Scholar
  77. Quay, W. B., Renzoni, A.: Twenty-four-hour rhythm in pineal mitotic activity and nuclear and nucleolar dimensions. Growth 30, 315–324 (1967).Google Scholar
  78. Ralph, C. L.: The pineal gland and geographical distribution of animals. Int. J. Biometeor. 19, 289–303 (1975 a).Google Scholar
  79. Ralph, C. L.: The pineal complex: a retrospective view. Amer. Zool. 15 (Suppl. 1), 105–116 (1975 b).Google Scholar
  80. Ralph, C. L.: Correlations of melatonin content in pineal gland, blood, and brain of some birds and mammals. Amer. Zool. 16, 35–43 (1976).Google Scholar
  81. Ralph, C. L., Lane, K. B.: Morphology of the pineal body of wild house sparrows (Passer domesticus) in relation to reproduction and age. Can. J. Zool. 47, 1205–1208 (1969).PubMedGoogle Scholar
  82. Reiss, M., Sideman, M. B., Plichta, E. S.: Spontaneous activity and pineal gland cell density. J. Endocrinol. 37, 475–476 (1967).PubMedGoogle Scholar
  83. Reiter, R. J.: Circannual reproductive rhythms in mammals related to photoperiod and pineal function: a review. Chronobiology 1, 365–395 (1974).Google Scholar
  84. Reiter, R. J., Welsh, M. G., Vaughan, M. K.: Age-related changes in the intact and sympathetically denervated gerbil pineal gland. Am. J. Anat. 146, 427–432 (1976).PubMedGoogle Scholar
  85. Romijn, H. J.: The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continuous illumination, and continuous darkness. J. Neural Transm. 36, 183–194 (1975).PubMedGoogle Scholar
  86. Romijn, H. J.: The influence of some sympatholytic, parasympatholytic and serotonin-synthesis-inhibiting agents on the ultrastructure of the rabbit pineal organ. Cell Tiss. Res. 167, 167–177 (1976).Google Scholar
  87. Romijn, H. J., Mud, M. T., Wolters, P. S.: Diurnal variations in number of Golgi-dense core vesicles in light pinealocytes of the rabbit. J. Neural Transm. 38, 231–237 (1976).PubMedGoogle Scholar
  88. Roth, W. D., Wurtman, R. J., Altschule, M. D.: Morphologic changes in the pineal parenchyma cells of rats exposed to continuous light or darkness. Endocrinology 71, 888–892 (1962).PubMedGoogle Scholar
  89. Roux, M., Richoux, J. P., Dussart, G.: Étude ultrastructurale de l’épiphyse de Lerot (Eliomys quercinus, L.). Bull. de l’assoc. Anat. 58, 1–2 (1974).Google Scholar
  90. Satodate, R., Sasaki, K., Minoru, O.: The pineal gland of intact, hypophy-sectonized, or ovariectomized rats. Arch. Neurol. 23, 278–286 (1970 a).PubMedGoogle Scholar
  91. Satodate, R., Hsieh, K. S., Ota, M.: Morphological changes in the pineal gland of the albino rat by hypophysectomy and ovariectomy. Experientia 26, 638–640 (1970 b).PubMedGoogle Scholar
  92. Smith, A. R., Pevet, P., van de Kar, L., Oosterom, R. v.: Effect of gonadotropic hormones on the rat pineal gland. A fluorescence histochemical and biochemical study. J. Neural Transm. 36, 217–226 (1975).PubMedGoogle Scholar
  93. Spiroff, B. E. N.: Embryonic and post-hatching development of the pineal body of the domestic fowl. Am. J. Anat. 103, 375–401 (1958).PubMedGoogle Scholar
  94. Tapp, E., Blumfield, M.: The parenchymal cells of the rat pineal gland. Acta Morphol. Neerl.-Scand. 8, 119–131 (1970).PubMedGoogle Scholar
  95. Tapp, E., Huxley, M.: The histological appearance of the human pineal gland from puberty to old age. J. Pathol. 108, 137–143 (1972).PubMedGoogle Scholar
  96. Trakulrungsi, W. K., Yeager, V. L.: Effect of photoperiod on early changes in the neonatal rat pineal gland. Experientia 33, 84–85 (1977).PubMedGoogle Scholar
  97. Ueck, M.: Weitere Untersuchungen zur Feinstruktur und Innervation des Pinealorgans von Passer domesticus L. Z. Zellforsch. 105, 276–302 (1970).PubMedGoogle Scholar
  98. Upson, R. H., Benson, B., Satterfield, V.: Quantitation of ultrastructural changes in the mouse pineal in response to continuous illumination. Anat. Rec. 184, 311–324 (1976).PubMedGoogle Scholar
  99. Vivien, J. H.: Signes de stimulation des activités sécrétoire des pinéalocytes chez la couleuvre Tropidonotus natrix L. traitée par des principes gonadotropes. C.R. Acad. Sci. 260, 5371–5372 (1965).Google Scholar
  100. Vollrath, L.: Synaptic ribbons of a mammalian pineal gland: circadian changes. Z. Zeilforsch. 145, 171–183 (1973).Google Scholar
  101. Vollrath, L., Huss, H.: The synaptic ribbons of the guinea-pig pineal gland under normal and experimental conditions. Z. 2ellforsch. 139, 417–429 (1973).Google Scholar
  102. Vollrath, L., Schmidt, D. S.: Enzymhistochemische Untersuchungen an der Zirbeldrüse normaler und trächtiger Meerschweinchen. Histochemie 20, 328–337 (1969).PubMedGoogle Scholar
  103. Wolfe, D. E., Potter, L. T., Richardson, K. C., Axelrod, J.: Localizing tritiated norepinephrine in sympathetic axons by electron microscopic autoradiography. Science 138, 440–442 (1962).PubMedGoogle Scholar
  104. Wurtman, R. J., Axelrod, J., Kelly, D. E.: The Pineal. New York: Academic Press. 1968.Google Scholar
  105. Zweens, J.: Influence of the oestrous cycle and ovariectomy on the phospholipid content of the pineal gland in the rat. Nature 197, 1114 to 1115 (1963).PubMedGoogle Scholar
  106. Zweens, J.: Alterations of the pineal lipid content in the rat under hormonal influences. Progr. Brain Res. 10, 540–551 (1965).Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • C. L. Ralph
    • 1
  1. 1.Colorado State UniversityFort CollinsUSA

Personalised recommendations