Localization of Indoleamine and Protein Synthesis in the Mammalian Pineal Gland

Chairman’s Introduction
  • J. Ariëns Kappers
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)


In a table, conditions and compounds have been listed either known or suggested to influence pineal function. In the same model, systems and organs and their products are indicated the function or, respectively, the quantity of which are known or suggested to be influenced by pineal secretory substances. Of the latter, indoleamines and Polypeptides are mentioned only although it is now known that also other low molecular weight biologically active compounds are produced by the gland.

Problems relating to the localization of indoleamine and protein synthesis in the pinealocyte are discussed. The synthesis of indoleamines, at least of serotonin, may occur freely in the cytosol although, especially in non-mammals, the presence of serotonin seems to be preferentially, but perhaps secondarily, related to the secretory dense-core vesicles. Questions concerning the exact function of pineal melatonin are shortly dealt with.

The granules of the secretory vesicles probably also contain a proteinaceous substance which, notwithstanding its unknown chemical nature, has been considered the antigonadotropic principle by some authors. Recent investigations on the production of active proteinaceous compounds in cisterns of the endoplasmic reticulum and between the layers of the nuclear envelope are reviewed. These substances are not concentrated in secretory granular vesicles, so scarce in the pinealocytes of many mammals. The problem in which part of the pinealocyte which proteinaceous active principle is produced is still largely unsolved as is their exact chemical composition.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arstila, A. U., Kalimo, H. O., Hyyppä, M.: Secretory organelles of the rat pineal gland: electron microscopic and histochemical studies in vivo and in vitro. In: The Pineal Gland. A CIBA Symposium (Wolstenholme, G. E. W., Knight, J., eds.), pp. 147–164. Edinburgh-London: Churchill Livingstone. 1971.Google Scholar
  2. Banerji, T. K., Quay, W. B.: Adrenal dopamine-beta-hydroxylase activity: 24-hour rhythmicity and evidence for pineal control. Experientia (Basel) 32, 253 (1976).CrossRefGoogle Scholar
  3. Benson, B., Satterfield, V.: Ultrastructural characteristics of mouse pinealocytes following optic enucleation or continuous illumination. Anat. Rec. 181, 321 (1975).Google Scholar
  4. Bridges, R., Tamarkin, L., Goldman, B.: Effects of photoperiod and melatonin on reproduction in the Syrian hamster. Ann. Biol. Anim. Bioch. Biophys. 16, 399–408 (1976).CrossRefGoogle Scholar
  5. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Gonadotrophin-and prolactin-induced increase of rat pineal hydroxyindole-O-methyl transferase: involvement of the sympathetic nervous system. J. Endocrinol. 68, 341–342 (1976).CrossRefPubMedGoogle Scholar
  6. Clabough, J.: Ultrastructural features of the pineal gland in normal and light deprived golden hamsters. 2. Zellforsch. 114, 151–164 (1971).CrossRefGoogle Scholar
  7. Collin, J. P.: La rudimentation des photorécepteurs dans l’organe pinéal des Vertébrés. In: Mécanisme de la Rudimentation des Organes chez les Embryons de Vertébrés. Coll. Internat. CNRS, No. 266, 393-407 (1976).Google Scholar
  8. Collin, J. P., Meiniel, A.: L’organe pinéal du genre Lacerta (Reptile, Lacertilien): action d’enzymes protéolytiques sur les grains denses (500-3 400 Å) des photorécepteurs rudimentaires. C.R. Soc. Biol. (Paris) 166, 370–374 (1972).Google Scholar
  9. Collin, J. P., Meiniel, A.: Métabolisme des indolamines dans l’organe pinéal de Lacerta (Reptiles, Lacertiliens). I. Intégration sélective de 5-HTP-3H (5-hydroxytryptophane-3H) et rétention de ses dérivés dans les photorécepteurs rudimentaires sécrétoires. Z. Zellforsch. 142, 549–570 (1973 a).CrossRefPubMedGoogle Scholar
  10. Collin, J. P., Meiniel, A.: Métabolisme des indolamines dans l’organe pinéal de Lacerta (Reptiles, Lacertiliens). II. L’activité MAO et l’incorporation de 5-HTP-3H et de 5-HT-3H dans les conditions normales et expérimentales. Z. Zeilforsch. 145, 331–361 (1973 b).CrossRefGoogle Scholar
  11. Collin, J. P., Calas, A., Juillard, M. T.: The avian pineal organ. Distribution of exogenous indoleamines: a qualitative study of the rudimentary photoreceptor cells by electron microscopic radioautography. Exp. Brain Res. 25, 15–33 (1976).CrossRefPubMedGoogle Scholar
  12. Collin, J. P., Juillard, M. T., Falcon, J.: Localization of 5-hydroxy-tryptamine and protein(s) in the secretion granules of the rudimentary photoreceptor cells in the pineal of Lacerta. J. Neurocytol. 6, 541–554 (1977).CrossRefGoogle Scholar
  13. Freund, D., Arendt, J., Vollrath, L.: Tentative immunohistochemical demonstration of melatonin in the rat pineal gland. Cell Tiss. Res. 181, 239–244 (1977).CrossRefGoogle Scholar
  14. Fujita, T.: The gastro-enteric endocrine cell and its paraneuronic nature. In: Chromaffin, Enterochromaffin and Related Cells. A Naito Foundation Symposium (Coupland, R. E., Fujita, T., eds.), pp. 191–208. Amsterdam-Oxford-New York: Elsevier. 1976.Google Scholar
  15. Gershon, M. D., Ross, L. L.: Location of sites of 5-hydroxytryptamine storage and metabolism by radioautography. J. Physiol. 186, 477–492 (1966).CrossRefPubMedCentralPubMedGoogle Scholar
  16. Hafeez, M. A., Zerihun, L.: Autoradiographic localization of 3H-5-HTP and 3H-5-HT in the pineal organ and circumventricular areas in the rainbow trout, Salmo gairdneri Richardson. Cell Tiss. Res. 170, 61–67 (1976).CrossRefGoogle Scholar
  17. Have-Kirchberg, M. L. L. van der, Morée, A. de, Laar, J. F. van, Gerwig, G. J., Ebels, I., Hus-Citharel, A., l’Héritier, A., Roseau, S., Zurburg, W., Moszkowska, A.: Separation of pineal extracts by gelfiltration. VI. Isolation and identification from sheep pineals of biopterin; comparison of the isolated compound with some synthetic pteridines and the biological activity of in vitro and in vivo bioassays. J. Neural Transm. 40, 205–220 (1977).Google Scholar
  18. Hoffmann, K., Kiiderling, J.: Pinealectomy inhibits stimulation of testicular development by long photoperiods in a hamster (Phodopus sungorus). Experientia (Basel) 31, 122–123 (1974).CrossRefGoogle Scholar
  19. Hoffmann, K., Küderling, I.: Antigonadal effects of melatonin in pineal-ectomized Djungarian hamsters. Naturwissensch. 64, 339 (1977).CrossRefGoogle Scholar
  20. Hori, S., Kuroda, Y., Saito, K., Ohotani, S.: Subcellular localization of tryptophan-5-mono-oxygenase in bovine pineal glands and raphe nuclei. J. Neurochem. 27, 911–914 (1976).CrossRefPubMedGoogle Scholar
  21. Ito, T., Matsushima, S.: Electron microscopic observations on the mouse pineal with particular emphasis on its secretory nature. Arch. hist. jap. 30, 1–15 (1968).CrossRefGoogle Scholar
  22. Juillard, M. T., Collin, J. P.: L’organe pinéal aviaire: étude ultracyto-chimique et pharmacologique d’un “pool” granulaire de 5-hydroxytryptamine chez la Perruche (Melopsittacus undulatus, Shaw). J. Microsc. Biol. cell. 26, 133–138 (1976).Google Scholar
  23. Juillard, M. T., Hartwig, H. G., Collin, J. P.: The avian pineal organ. Distribution of endogenous monoamines; a fluorescence microscopic, microspectrofluorimetric and pharmacological study in the parakeet. J. Neural Transm. 40, 269–287 (1977).Google Scholar
  24. Karasek, M.: Ultrastructure of rat pineal gland in organ culture; influence of norepinephrine, dibutyryl cyclic adenosine 3-5-monophosphate and adenohypophysis. Endokrinol. 64, 106–114 (1974).Google Scholar
  25. Karasek, M., Pawlikowski, M., Ariëns Kappers, J., Stępień, H.: Influence of castration followed by administration of LH-RH on the ultrastructure of rat pinealocytes. Cell Tiss. Res. 167, 325–339 (1976).CrossRefGoogle Scholar
  26. Klein, D. C., Yuwiler, A., Weiler, J. L., Plotkins, S.: Postsynaptic adren-ergic-cyclic AMP control of the serotonin content of cultured rat pineal glands. J. Neurochem. 21, 1261–1271 (1973).CrossRefPubMedGoogle Scholar
  27. Louis, C. J., Kenny, G. C., Anderson, R. McD.: Autoradiographic localization of 5-hydroxytryptamine in monkey pineal gland. Experientia (Basel) 26, 756–757 (1970).CrossRefGoogle Scholar
  28. Lynch, H. J., Ho, M., Wurtman, R. J.: The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress, but not that caused by exposure to darkness. J. Neural Transm. 40, 87–97 (1977).CrossRefPubMedGoogle Scholar
  29. Matthews, M. J., Benson, B.: Inactivation of pineal antigonadotrophin by proteolytic enzymes. J. Endocrinol. 56, 339–340 (1973).CrossRefPubMedGoogle Scholar
  30. McNeill, M. E.: Membranous structures in pinealocytes of the infertile diabetic mutant mouse (C 57 BL/Ks-db/db). J. Neural Transm. 42, 207–221 (1978).CrossRefPubMedGoogle Scholar
  31. Moszkowska, A., Ebels, I., Scemama, A.: Étude in vitro des extraits fractionnés d’épiphyses d’agneau. C.R. Soc. Biol. (Paris) 159, 2298 (1965).Google Scholar
  32. Nir, I., Hirschmann, N.: The effect of thyroid hormones on rat pineal indoleamine metabolism in vitro. J. Neural Transm. 42, 117–126 (1978).CrossRefPubMedGoogle Scholar
  33. Nunez, E. A., Gershon, M. D.: Synthesis and storage of serotonin by para-follicular cells of the thyroid gland of active, prehibernating and hibernating bats. Endocrinol. 90, 1008–1024 (1972).CrossRefGoogle Scholar
  34. Pearse, A. G. E.: Random coil formation of Polypeptide hormone precursor protein in endocrine cells. Nature 221, 1210–1211 (1969 a).CrossRefPubMedGoogle Scholar
  35. Pearse, A. G. E.: The cytochemistry and ultrastructure of Polypeptide hormone producing cells of the APUD series and the embryology, physiology and pathologic implications of the concept. J. Histochem. Cytochem. 17, 303–313 (1969 b).CrossRefPubMedGoogle Scholar
  36. Petit, A.: L’épiphyse d’un serpent: Tropidonotus natrix L. II. Étude cyto-chimique, autoradiographique et pharmacologique. Z. Zeilforsch. 120, 246–260 (1971).CrossRefGoogle Scholar
  37. Petit, A.: Contribution à l’étude de l’épiphyse des Reptiles: le complexe épiphysaire des Lacertiliens et l’épiphyse des Ophidiens. Étude embryologique, structurale, ultrastructurale; analyse qualitative et quantitative de la sérotonine dans des conditions normales et expérimentales. Thèse, Strasbourg. 1976.Google Scholar
  38. Pevet, P.: The pineal gland of the mole (Talpa europea L.). I. The fine structure of the pinealocytes. Cell Tiss. Res. 153, 277–292 (1974).CrossRefGoogle Scholar
  39. Pevet, P.: Vacuolated pinealocytes in the hedgehog (Erinaceus europens L.) and the mole (Talpa europea L.). Cell Tiss. Res. 159, 303–309 (1975).CrossRefGoogle Scholar
  40. Pevet, P.: Correlations between pineal gland and sexual cycle. An electron microscopical and histochemical investigation on the pineal gland of the hedgehog, mole, mole-rat and white rat. Thesis, University of Amsterdam. 1976.Google Scholar
  41. Pevet, P.: The pineal gland of the mole (Talpa europea L.). IV. Effect of pronase on material present in cisternae of the granular endoplasmic reticulum of pinealocytes. Cell Tiss. Res. 182, 215–219 (1977).Google Scholar
  42. Pevet, P., Smith, A. R.: The pineal gland of the mole (Talpa europea L.). II. Ultrastructural variations observed in the pinealocytes during different parts of the sexual cycle. J. Neural Transm. 36, 227–248 (1975).CrossRefPubMedGoogle Scholar
  43. Pevet, P., Ariëns Kappers, J., Nevo, E.: The pineal gland of the mole-rat (Spalax ehrenbergi, Nehring). I. The fine structure of pinealocytes. Cell Tiss. Res. 174, 1–24 (1976).CrossRefGoogle Scholar
  44. Pevet, P., Ariëns Kappers, J., Voûte, A. M.: The pineal gland of nocturnal animals. I. The pinealocytes of the bat (Nyctalus noctula, Schreber). J. Neural Transm. 40, 47–68 (1977).CrossRefPubMedGoogle Scholar
  45. Quay, W. B.: Pineal Chemistry in Cellular and Physiological Mechanisms. Springfield, Ill.: Charles C Thomas. 1974.Google Scholar
  46. Reiter, R. J., Banks, A. F.: Apparent paradoxical effects of melatonin on reproduction in rodents. Anat. Rec. 184, 511 (1976).Google Scholar
  47. Reiter, R. J., Vaugban, M. K.: A study of indoles which inhibit pineal anti-gonadotrophic activity in male hamsters. Endocr. Res. Comm. 2, 299–308 (1975).CrossRefGoogle Scholar
  48. Reiter, R. J., Blask, D. E., Vaughan, M. K.: A counter antigonadotropic effect of melatonin in male rats. Neuroendocrinology 19, 72–80 (1975 a).CrossRefPubMedGoogle Scholar
  49. Reiter, R. J., Vaughan, M. K., Waring, P. J.: Prevention by melatonin of short day induced atrophy of the reproductive systems of male and female hamsters. Acta endocrinol. (Kbh.) 84, 410–418 (1977).Google Scholar
  50. Reiter, R. J., Lukaszyk, A. J., Vaughan, M. K., Blask, D. E.: New horizons in pineal research. Amer. Zool. 16, 93–101 (1976).Google Scholar
  51. Reiter, R. J., Vaughan, M. K., Blask, D. E., Johnson, L. Y.: Pineal methoxy-indoles: new evidence concerning their function in the control of pineal-mediated changes in the reproductive physiology of male golden hamsters. Endocrinology 96, 206–213 (1975 b).CrossRefPubMedGoogle Scholar
  52. Relkin, R.: The Pineal. Montreal: Eden Press. 1976.Google Scholar
  53. Romijn, H. J.: The ultrastructure of the rabbit pineal gland after sympathectomy, parasympathectomy, continuous illumination, and continuous darkness. J. Neural Transm. 36, 183–194 (1975).CrossRefPubMedGoogle Scholar
  54. Romijn, H. J., Gelsema, A. J.: Electron microscopy of the rabbit pineal organ in vitro. Evidence of norepinephrine-stimulated secretory activity of the Golgi apparatus. Cell Tiss. Res. 172, 365–377 (1976).CrossRefGoogle Scholar
  55. Romijn, H. J., Mud, M. T., Wolters, P. S.: Diurnal variations in number of Golgi-dense core vesicles in light pinealocytes of the rabbit. J. Neural Transm. 38, 231–237 (1976).CrossRefPubMedGoogle Scholar
  56. Romijn, H. J., Mud, M. T., Wolters, P. S.: A pharmacological and auto-radiographic study on the ultrastructural localization of indoleamine synthesis in the rabbit pineal gland. Cell Tiss. Res. 185, 199–214 (1977).CrossRefGoogle Scholar
  57. Roux, M., Richoux, J. P.: Étude ultrastructurale de l’épiphyse du Lérot (Eliomys quercinus L.) vivant dans des conditions normales et expérimentales. J. microsc. Biol. cell. 22, 33a–34a (1975).Google Scholar
  58. Roux, M., Richoux, J. P., Cordonnier, J. L.: Influence de la photopériode sur l’ultrastructure de l’épiphyse avant et pendant la phase génitale saisonnière chez la femelle du Lérot (Eliomys quercinus). J. Neural Transm. 41, 209–223 (1977).CrossRefPubMedGoogle Scholar
  59. Roux, M., Richoux, J. P., Dussart, G.: Étude ultrastructurale de l’épiphyse du Lérot (Eliomys quercinus L.). Bull. Assoc. Anat. (Nancy) 58, 1–12 (1974).Google Scholar
  60. Sheridan, M. N.: Pineal gland fine structure; dense-cored vesicles. In: Brain-Endocrine Interaction. II. The Ventricular System. Second Intern. Symp., Shizuoka 1974 (Knigge, K. M., Scott, D. E., Kobayashi, H., Ishii, S., eds.), pp. 324–336. Basel: Karger. 1975.Google Scholar
  61. Sheridan, M. N., Keppel, J. F.: The effect of p-chlorophenylalanine (PCPA) and 6-hydroxydopamine (6-HD) on ultrastructural features of hamster pineal parenchyma. Anat. Rec. 122, 427 (1971).Google Scholar
  62. Sheridan, M. N., Sladek, J. R.: Histofluorescence and ultrastructural analysis of hamster and monkey pineal. Cell Tiss. Res. 164, 145–152 (1975).CrossRefGoogle Scholar
  63. Upson, R. H., Benson, B., Satterfield, V.: Quantification of ultrastructural changes in the mouse pineal in response to continuous illumination. Anat. Rec. 184, 311–324 (1976).CrossRefPubMedGoogle Scholar
  64. Vivien-Roels, B.: L’épiphyse des Chéloniens. Étude embryologique, structurale, ultrastructurale; analyse qualitative et quantitative de la sérotonine dans des conditions normales et expérimentales. Thèse, Strasbourg. 1976.Google Scholar
  65. Wartenberg, H., Baumgarten, H. G.: Untersuchungen zur fluoreszenz-und elektronenmikroskopischen Darstellung von 5-Hydroxytryptamin (5-HT) im Pinealorgan von Lacerta viridis und L. muralis. Z. Anat. Entw.-gesch. 128, 185–210 (1969).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • J. Ariëns Kappers
    • 1
  1. 1.CS Laren N.H.The Netherlands

Personalised recommendations