Advertisement

Cervical Spinal Cord Lesions Disrupt the Rhythm in Human Melatonin Excretion

  • L. W. Kneisley
  • M. A. Moskowitz
  • H. J. Lynch
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)

Summary

To determine whether spinal cord lesions disrupt the diurnal activity of the human pineal, urinary melatonin levels were measured over 24 hours (4 or 8-hourly intervals) in male patients with clinical evidence of cervical spinal cord transection. During the waking state, levels of melatonin in these subjects ranged from 3.2–13.5 ng/4 hours; during sleep and darkness, values ranged from 1.8–10.5 ng/4 hours. Levels of serum cortisol, aldosterone, and growth hormone showed rhythmic variations in these subjects. The absence of significant nocturnal melatonin increases distinguishes quadriplegic subjects from normal males and from one subject with a lesion of the lumbar spinal cord. These differences may be caused by “decentralization” of the pineal organ due to a lesion within the cervical spinal cord interrupting descending sympathetic fibers. If so, the human pineal, like that of other mammals, is regulated, at least in part, by activity within the central nervous system via sympathetic nervous connections.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariëns Kappers, J.: The development, topographical relations and innervation of the epiphysis cerebri in the albino rat. 2. Zellforsch. Mikrosk. Anat. 52, 163–215 (1960).CrossRefGoogle Scholar
  2. Axelrod, J., Wurtman, R. J., Snyder, S. H.: Control of hydroxyindole-O-methyl-transferase activity in the rat pineal gland by experimental lighting. J. Biol. Chem. 740, 949–955 (1965).Google Scholar
  3. Fraschini. F., Collu, R., Martini, L.: Mechanisms of inhibitory action of pineal principles on gonadotrophin secretion. In: The Pineal Gland (Wolstenholme, G. E. W., Knight, J., eds.), pp. 259–273. London: Churchill Livingstone. 1971.Google Scholar
  4. Jimerson, D. C., Lynch, H. J., Post, R. M., Wurtman, R. J., Bunney, W. E.: Urinary melatonin rhythms during sleep deprivation in depressed patients and normals. Life Sciences 20, 1501–1508 (1977).CrossRefPubMedGoogle Scholar
  5. Kinson, G.: Pineal Factors in the Control of Testicular Function, Cellular Mechanisms Modulating Gonadal Hormone Action, Vol. 2 (Singhal, R. L., Thomas, A., eds.), pp. 87–139. Baltimore: University Park Press. 1976.Google Scholar
  6. Klein, D. C., Weller, J. L.: Indole metabolism in the pineal gland: a circadian rhythm in N-acetyltransferase. Science 169, 1093–1095 (1970).CrossRefPubMedGoogle Scholar
  7. Lynch, H. J.: Diurnal oscillations in pineal melatonin content. Life Sci. 10, 791–795 (1971).CrossRefGoogle Scholar
  8. Lynch, H. J., Eng, J. P., Wurtman, R. J.: Control of pineal indole biosynthesis by changes in sympathetic tone caused by factors other than environmental lighting. Proc. Nat. Acad. Sci. U.S.A. 70, 1704–1707 (1973).CrossRefGoogle Scholar
  9. Lynch, H. J., Wurtman, R. J., Moskowitz, M. A., Archer, M. C., Ho, M. H.: Daily rhythm in human urinary melatonin. Science 187, 169–171 (1975 a).CrossRefPubMedGoogle Scholar
  10. Lynch, H. J., Ozaki, Y., Shakal, D., Wurtman, R. J.: Melatonin excretion of man and rats: Effect of time of day, sleep, pinealectomy and food consumption. Int. J. Biometeorology 19, 267–279 (1975 b).CrossRefGoogle Scholar
  11. Martin, J. E., Klein, D. C.: Melatonin inhibition of the neonatal pituitary response to lutenizing hormone releasing factor. Science 191, 301–302 (1976).CrossRefPubMedGoogle Scholar
  12. Moore, R. Y., Heller, A., Bhatnagar, R. K., Wurtman, R. J., Axelrod, J.: Control of the pineal gland: usual pathways. Archives of Neurology 18, 208–218 (1968).CrossRefPubMedGoogle Scholar
  13. Moore, R. Y., Klein, D. C.: Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 71, 17–33 (1974).CrossRefPubMedGoogle Scholar
  14. Rechtschaffen, A., Kales, A.: A Manual of Standardized Terminology Techniques and Scoring System for Sleep Stages of Human Subjects. Washington, D.C.: U.S. Government Printing Office (Public Health Service). 1968.Google Scholar
  15. Reiter, R. J.: Comparative physiology: Pineal Gland. Ann. Rev. Physiol. 35, 305–328 (1973).CrossRefGoogle Scholar
  16. Saper, C. A., Loewy, A. D., Swanson, L. W., Cowan, W. M.: Direct hypothalamo-autonomic connections. Brain Res. 117, 305–312 (1976).CrossRefPubMedGoogle Scholar
  17. Swanson, L. W., Cowan, W. M.: The efferent connections of the supra-chiasmatic nucleus of the hypothalamus. J. Comp. Neurol. 160, 1–12 (1975).CrossRefPubMedGoogle Scholar
  18. Turek, F. W., Desjardins, C., Manaker, M.: Melatonin: antigonadal and progonadal effects in male hamsters. Science 190, 280–282 (1975).CrossRefPubMedGoogle Scholar
  19. Williams, R. L., Karacan, I., Hursch, C. G.: Electroencephalography (EEG) of Human Sleep. New York: J. Wiley. 1974.Google Scholar
  20. Wurtman, R. J., Axelrod, J., Phillips, L. S.: Melatonin synthesis in the pineal gland: control by light. Science 142, 1071–1073 (1963).CrossRefPubMedGoogle Scholar
  21. Wurtman, R. J., Axelrod, J., Fischer, J. F.: Melatonin synthesis in the pineal gland: effect of light mediated by the sympathetic nervous system. Science 143, 1328–1330 (1964).CrossRefGoogle Scholar
  22. Wurtman, R. J., Axelrod, J., Chu, E., Heller, A., Moore, R. Y.: Medial forebrain bundle lesions: Blockade of effects of light on rat gonads and pineal. Endocrinology 81, 509–514 (1967).CrossRefPubMedGoogle Scholar
  23. Wurtman, R. J., Axelrod, J., Chu, E. W.: Melatonin, a pineal substance: effect on the rat ovary. Science 141, 277–278 (1963).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • L. W. Kneisley
    • 1
    • 2
    • 3
    • 4
    • 5
  • M. A. Moskowitz
    • 1
    • 2
    • 3
    • 4
    • 5
  • H. J. Lynch
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Spinal Cord Injury and Research DepartmentsWest Roxbury Veterans Administration HospitalWest RoxburyUSA
  2. 2.Laboratory of Neuroendocrine Regulation, Department of Nutrition and Food ScienceMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Section of Neurology, Department of MedicinePeter Bent Brigham HospitalBostonUSA
  4. 4.Department of NeurologyHarvard Medical SchoolBostonUSA
  5. 5.Department of NeuroscienceChildren’s Hospital Medical CenterBostonUSA

Personalised recommendations