Advertisement

Non-Reproductive Systems and the Pineal Gland

Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)

Summary

The paper reviews the data accumulated on the interrelationship between the pineal gland and the central nervous system as evidenced by induced neuroanatomical, biochemical and hormonal changes taking place in one system following the activation or inhibition of the other. The possible role of the pineal in modifying behaviour and its involvement in mental impairment is consequently discussed.

Further questions dealt with are, whether in addition to the pineal effect via the hypothalamic-pituitary axis on the peripheral non-reproductive glands, thyroid and adrenals, a direct feedback mechanism exists between their hormones and the pineal. The effect of the pineal on the endocrine glands which are known not to be under the direct control of the hypothalamo-pituitary axis, pancreas, thymus and parathyroid, is also discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anton-Tay, F.: Clinical effects of melatonin. In: Proc. of the Fourth Internat. Congress of Endocrinology. Amsterdam-Washington: Excerpta Medica. 1972.Google Scholar
  2. Anton-Tay, F., Chou, C., Anton, S., Wurtman, R. J.: Brain serotonin concentrations: elevation following intraperitoneal administration of melatonin. Science 162, 277–278 (1968).PubMedGoogle Scholar
  3. Ariëns Kappers, J.: Survey of the innervation of the epiphysis cerebri and accessory pineal organs in vertebrates. In: Brain Research, Vol. 10 (Ariëns Kappers, J., Schadé, J. P., eds.), pp. 87–153. Amsterdam: Elsevier. 1965.Google Scholar
  4. Bailey, C. J., Atkins, T. W., Matty, A. J.: Melatonin inhibition of insulin secretion in the rat and mouse. Hormone Res. 5, 21–28 (1974).PubMedGoogle Scholar
  5. Banerji, T. K., Quay, W. B.: Adrenal dopamine-β-hydroxylase activity 24-hour rhythmicity and evidence for pineal control. Experientia 32, 253–254 (1976).PubMedGoogle Scholar
  6. Baráth, P.: New aspects of the role of serotonin in the insulin release mechanism. Acta Diabet. Lat. 11, 315–329 (1974).Google Scholar
  7. Baráth, P., Csaba, G.: Histological changes in the lung thymus and adrenal one and a half year after pinealectomy. Acta Biol. Acad. Sci. Hung. 25, 123–125 (1974).PubMedGoogle Scholar
  8. Behroozi, K., Assael, M., Ivriani, I., Nir, I.: Electrocortical reactions of pinealectomized and intact rats to lethal doses of pentobarbital. Neuro-pharmacology 9, 219–222 (1970).Google Scholar
  9. Benson, B., Miller, C. W., Sorrentino, S.: Effects of blinding on blood glucose and serum insulin-like activity in rats. Texas Rep. Biol. Med. 29, 513–525 (1971).Google Scholar
  10. Bindoni, M., Raffaele, R.: Mitotic activity in the adenohypophysis of rats after pinealectomy. J. Endocrin. 41, 451–452 (1968).Google Scholar
  11. Burks, T. F., Dafny, N.: Morphine and 5-hydroxytryptamine interactions in rat hypothalamus and pineal body. Exper. Neurol. 55, 458–468 (1977).Google Scholar
  12. Burns, J. K.: Serum sodium and potassium and blood glucose levels in cynamolgus monkeys after administration of melatonin. J. Physiol. 232, 84–85P (1973).Google Scholar
  13. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Incorporation of 3H-Leucine into proteins in the hypothalamus and anterior hypophysis. Effects of pinealectomy, superior cervical ganglionectomy and continuous exposure to light or darkness. Neuroendocrinology 16, 74–83 (1974).PubMedGoogle Scholar
  14. Carman, J. S., Post, R. M., Buswell, R., Goodwin, F. K.: Negative effects of melatonin on depression. Am. J. Psychiatry 133, 1181–1186 (1976).PubMedGoogle Scholar
  15. Casetta, R., Osima, B., Bianchini, P., Brabanti-Silva, C.: The effects of pineal gland extracts on the thymus of monogonadectomized rats. Biochim. Biol. Sper. 8, 173–176 (1969).Google Scholar
  16. Choe, J.-Y., Peng, T.-Ch.: Effect of 5-methoxytryptamine on serum calcium and phosphate in rats. J. Pharm. Exp. Therap. 189, 593–602 (1974).Google Scholar
  17. Coculescu, M., Pavel, S.: Arginine vasotocin like activity of cerebrospinal fluid in diabetes insipidus. J. Clin. Endocrin. Metab. 36, 1031–1032 (1973).Google Scholar
  18. Csaba, G., Baráth, P.: Are Langerhans’ islets influenced by the pineal body? Experientia 27, 962 (1971).PubMedGoogle Scholar
  19. Csaba, G., Baráth, P.: Effect of pinealectomy on the 3H-5-HT uptake of mast cells in the thyroid gland of the rat. Acta Anat. 89, 442–451 (1974).PubMedGoogle Scholar
  20. Csaba, G., Bardth, P.: The effect of pinealectomy on the parafollicular cells of the rat thyroid gland. Acta Anat. 88, 137–146 (1974 a).PubMedGoogle Scholar
  21. Csaba, G., Bardth, P.: Morphological changes of thymus and the thyroid gland after postnatal extirpation of pineal body. Endocrin. Exp. 9, 59–67 (1975).Google Scholar
  22. Csaba, G., Nagy, U.: The regulatory role of the pineal gland on the thyroid gland, adrenal medulla and islets of Langerhans. Acta Biol. Med. Germ. 31, 617–619 (1973).PubMedGoogle Scholar
  23. Csaba, G., Reti, I., Fischer, J.: Effect of pineal body on thyroid-thymus correlations. Acta Med. Acad. Sci. Hung. 27, 183–189 (1970).PubMedGoogle Scholar
  24. De Fronzo, R. A., Roth, W. D.: Evidence for the existence of a pineal-adrenal and pineal-thyroid axis. Acta Endocrin. 70, 31–42 (1972).Google Scholar
  25. De Prospo, N., Melgar, M.: Effects of p-chlorophenylalanine on pineal serotonin and 131I uptake by the thyroid glands of rats. J. Endocrin. 66, 295–296 (1975).Google Scholar
  26. De Prospo, N., Safinski, R. J., De Martino, L. J., McGuiness, E. T.: Melatonin and its presursor’s effect on 131I uptake by the thyroid gland under different photic effects. Life Sciences 8, 837–842 (1969).PubMedGoogle Scholar
  27. De Vries, R. A. C.: Influence of pinealectomy on hypothalamic magnocellular neurosecretory activity in the female rat during normal light conditions, light induced persistent oestrus and after gonadectomy. Neuroendocrinology 9, 244–249 (1972).PubMedGoogle Scholar
  28. Dickson, K. L., Hasty, D. L.: Effects of pineal gland in unilaterally adrenal-ectomized rats. Acta Endocrin. 70, 438–444 (1972).Google Scholar
  29. Dill, R. E.: The effects of pinealectomy or pineal extracts on corticosterone secretion in the rat. Anat. Rec. 139, 222 (1961).Google Scholar
  30. Fabre, L. F., Banks, R. C., McIsaac, W. M., Farrell, G.: Effects of ubiquinone and related substances on secretion of aldosterone and cortisol. Am. J. Physiol. 208, 1275–1280 (1965).PubMedGoogle Scholar
  31. Farrell, G.: Glomerulotropic activity of an acetone extract of pineal tissue. Endocrinology 65, 239–241 (1959).PubMedGoogle Scholar
  32. Feldman, J. M., Lebovitz, H. E.: Structural determinations of indole amine action on in vitro insulin release. Endocrinology 91, 809–816 (1972).PubMedGoogle Scholar
  33. Feldstein, A., Chang, F. H., Kucharski, J. M.: Tryptophol, 5-hydroxytryptophol and 5-methoxytryptophol induced sleep in mice. Life Sciences 9, 323–329 (1970).PubMedGoogle Scholar
  34. F raschini, F., Mess, B., Martini, L.: Pineal gland, melatonin and the control of luteinizing hormone secretion. Endocrinology 82, 919–924 (1968).PubMedGoogle Scholar
  35. Gey, K. F., Georgi, H.: Effect of neurotropic agents on total pyridoxal phosphate and on the activity of the decarboxylase of aromatic amino acids as well as of other pyridoxal phosphate-dependent enzymes in rat brain. J. Neurochem. 23, 725–738 (1974).PubMedGoogle Scholar
  36. Giordano, G., Balestreri, R.: La glande épiphysaire dans la régulation de la biosynthèse de l’aldostérone. Ann. Endocrin. 24, 331–347 (1963).Google Scholar
  37. Giordano, G., Balestreri, R., Jacopino, G. E., Fappiani, E., Bertolini, S.: L’action in vitro de la mélatonine sur l’hormonosynthèse corticosurrenale du rat. Ann. Endocrin. 31, 1071–1080 (1970).Google Scholar
  38. Gromova, E. A., Kraus, M., Křček, J.: Effect of melatonin and 5-hydroxytryptamine on aldosterone and corticosterone production by adrenal glands of normal and hypophysectomized rats. J. Endocrin. 39, 345 to 350 (1967).Google Scholar
  39. Guansing, A. R., Murk, L. M.: Distribution of thyrotropin releasing hormone in human brain. Horm. Metab. Res. 8, 493–494 (1976).PubMedGoogle Scholar
  40. Hall, C. E., Ayachi, S., Eversole, W. J., Hall, O.: Evolution of adrenal regeneration hypertension in blinded rats. Endocrinology 96, 519–522 (1975).PubMedGoogle Scholar
  41. Hartley, R., Smith, J. A.: Formation in vitro of N-acetyl 3, 4-dimethoxy-phenethylamine by pineal HIOMT. Biochem. Pharmacol. 22, 2425 to 2428 (1973).PubMedGoogle Scholar
  42. Hartley, R., Smith, J. A.: The activation of pineal HIOMT by psychoto-mimetic drugs. J. Pharm. Pharmac. 25, 751–752 (1973 a).Google Scholar
  43. Hartley, R., Padwick, D., Smith, J. A.: The inhibition of pineal HIOMT by haloperidol and fluphenazine. J. Pharm. Pharmac, 24 supplement, 100–103 (1972).Google Scholar
  44. Jouan, P., Samperez, S.: Studies on the adrenoglomerulotropic properties of pineal body. In: Research on Steroids. Transactions of the First Meeting of the Internat. Study Group for Steroid Hormones, pp. 243–255. Rome: Tipografia Poliglotta Vaticana. 1963.Google Scholar
  45. Jouan, P., Samperez, S.: Action des extraits d’épiphyses sur la corticoido-genèse in vitro. C.R. Soc. Biol. 159, 316–319 (1965).Google Scholar
  46. Karasek, M.: Ultrastructure of the epiphysis in white rats under normal conditions and after hypophysectomy. Polish Endocrinology 22, 13–26 (1971).Google Scholar
  47. Karppanen, H.: Effect of Propranolol on the blood pressure of normotensive and pinealectomized hypertensive rats. Naunyn-Schmiedeberg’s Arch. Pharmacol. 281, 1–12 (1974).Google Scholar
  48. Karppanen, H., Vapaatalo, H., Lahovaara, S., Paasonen, M. K.: Studies with pinealectomized rats. Pharmacology 3, 76–84 (1970).PubMedGoogle Scholar
  49. Karppanen, H., Airaksonen, M. M., Särkimäki, I.: Effects in rats of pineal-ectomy and oxypertine on spontaneous locomotor activity and blood pressure during various light schedules. Ann. Med. Exp. Biol. Fenn. 51, 93–103 (1973).PubMedGoogle Scholar
  50. Karppanen, H., Lahovaara, S., Mattila, M. J.: Cardiovascular effects of tolamolol, a new beta-adrenoceptor blocking drug, in pinealectomized hypertensive rats. Ann. Med. Exp. Biol. Fenn. 51, 104–111 (1973 a).PubMedGoogle Scholar
  51. Kind, F. A., Chang, C. C., Zbuzkowa, V.: Observation on the influence of changing photoperiod on spontaneous wheel running activity of neonatally pinealectomized rats. Endocrinology 87, 38–42 (1970).Google Scholar
  52. Kinson, G. A., Singer, B., Grant, L.: Adrenocortical hormone secretion at various time intervals after pinealectomy in the rat. Gen. Comp. Endocrin. 10, 447–449 (1968).Google Scholar
  53. Kitay, J. I.: Pineal gland and pituitary adrenocortical function. Ann. Endocrin. 24, 227 (1963).Google Scholar
  54. Kovacs, G. L., Gajari, L., Telegdy, G., Lissak, K.: Effect of melatonin and pinealectomy on avoidance and exploratory activity in the rat. Physiol. Behav. 13, 349–355 (1974).PubMedGoogle Scholar
  55. Krstić, R.: Über Veränderungen der Epithelkörperchen nach Epiphysektomie. 2. Zellforsch. 77, 8–24 (1967).Google Scholar
  56. Krstić, R.: Über die Wirkung von Epiphysenextrakt auf die Struktur der Epithelkörperchen der Ratte. Z. Zellforsch. 89, 73–79 (1968).PubMedGoogle Scholar
  57. Krstić, R., Tarsoly, E.: Enzymhistochemische Untersuchungen der Calcitonineinwirkung aus das Corpus Pineale bei der Ratte. Experientia 28, 1234–1235 (1972).PubMedGoogle Scholar
  58. Lommer, D.: Hemmung der Corticosteroid-11β-Hydroxylierung durch einen Extrakt aus Corpus Pineale. Experientia 22, 122–123 (1966).PubMedGoogle Scholar
  59. Lupulescu, A.: Ultrastructure of the pineal gland after hypophysectomy. Experientia 24, 482–484 (1968).PubMedGoogle Scholar
  60. Lynch, H. J., Ho, M., Wurtman, R. J.: The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress but not that caused by exposure to darkness. J. Neural Transm. 40, 87–97 (1977).PubMedGoogle Scholar
  61. McKeown, B. A., John, T. M., George, J. C.: Diurnal variation in effects of melatonin on plasma growth hormone and glucose in the pigeon. Endocrinol. Exp. 9, 263–268 (1975).Google Scholar
  62. Mess, B., Peter, L.: Effect of intracerebral serotonin administration on pituitary-thyroid function. Endocrin. Exper. 9, 105–113 (1975).Google Scholar
  63. Meyer, D. C., Quay, W. B., Ma, Y.-H.: Comparative inhibition of hypothalamic uptake of 5-hydroxytryptamine and norepinephrine by 5-hydroxy-and 5-methoxyindole derivatives. Gen. Pharmacol. 6, 285 to 288 (1975).Google Scholar
  64. Milcou, S. M., Milcou, I., Nanu, L.: Le rôle de la glande pineale dans le métabolisme des glucides. Ann. Endocrin. 24, 233–254 (1963).Google Scholar
  65. Milcou, S. M., Petrescu, R., Tașcă, C.: The effect of thyroxine and cortisol on some dehydrogenases and lysosomal enzymes activities in rat pineal cultures. Histochemie 15, 312–317 (1968).Google Scholar
  66. Milcou, S. M., Holban, R., Tașcă, C., Ghinea, E., Stănescu, O.: In vitro study of thyroxine effects on enzymatic activity and cell differentiation in the pineal gland. Rev. Roum. Endocrin. 5, 203–207 (1968 a).Google Scholar
  67. Milcou, S. M., Nanu-Ionescu, L., Milcou, I.: The effect of pinealectomy on plasma insulin in rats. In: The Pineal Gland. A Ciba Foundation Symposium (Wolstenholme, G. E. W., Knight, J., eds.), pp. 345–357. Edinburgh-London: Churchill Livingstone. 1971.Google Scholar
  68. Moore, R. Y.: Indolamine metabolism in the intact and denervated pineal, pineal stalk and habenula. Neuroendocrinology 19, 323–330 (1975).PubMedGoogle Scholar
  69. Morimoto, Y., Oishi, T., Arisue, K., Ogava, Z., Tanakay F., Yano, S., Yamamura, Y.: Circadian rhythm of plasma corticosteroid in adult female rats. Acta Endocrin. 80, 527–541 (1975).Google Scholar
  70. Motta, M., Fraschini, F., Martini, L.: Hypothalamic and extrahypothalamic mechanisms controlling adrenocorticotrophin secretion. In: Memoirs of the Society for Endocrinology, Vol. 17, pp. 3–17. Cambridge University Press. 1968.Google Scholar
  71. Motta, M., Schiaffiniy O., Piva, F., Martiniy L.: Pineal principles and the control of adrenocorticotrophin secretion. In: The Pineal Gland. A Ciba Foundation Symposium (Wolstenholme, G. E. W., Knight, J., eds.), pp. 279–290. Edinburgh-London: Churchill Livingstone. 1971.Google Scholar
  72. Mouret, J., Coindet, J., Chouvet, G.: Effet de la pinéalectomie sur les états et rhythmes de sommeil du rat mâle. Brain Research 81, 97–105 (1974).PubMedGoogle Scholar
  73. Nanu, L., Marcean, R., Ionescu, V., Milcou, I.: Correlations between pineal body and pyruvemia levels. Rev. Roum. Endocrin. 6, 141–147 (1969).Google Scholar
  74. Narang, G. D., Singh, D. V., Turner, C. W.: Effect of melatonin on thyroid hormone secretion rate and feed consumption of female rats. Proc. Soc. Exp. Biol. Med. 125, 184–188 (1967).PubMedGoogle Scholar
  75. Newman-Taylor, A., Farrell, G.: Facteur glomérulotrope. Ann. Endocrin. 24, 228–232 (1963).Google Scholar
  76. Nir, I., Hirschmann, N.: The effect of thyroid hormones on rat pineal indoleamine metabolism in vitro. J. Neural Transm. 42, 83–88 (1978).Google Scholar
  77. Nir, I., Behroozi, K., Assael, M., Ivriani, I., Sulman, F. G.: Changes in the electrical activity of the brain following pinealectomy. Neuroendo-crinology 4, 122–127 (1969).Google Scholar
  78. Nir, I., Schmidt, U., Hirschmann, N., Sulman, F. G.: The effect of pinealectomy on rat plasma corticosterone levels under various conditions of light. Life Sciences 10, 317–324 (1971).Google Scholar
  79. Nir, I., Hirschmann, N., Kremer, N., Sulman, F. G.: Inversion of pineal N-acetyltransferase rhythm by reversed environmental lighting. Neuro-endocrinology 15, 231–235 (1974).Google Scholar
  80. Nir, I., Hirschmann, N., Sulman, F. G.: Inhibition of pineal HIOMT by pyridoxal-5′-phosphate. Biochem. Pharmacol. 25, 581–583 (1976).PubMedGoogle Scholar
  81. Nir, I., Hirschmann, N., Puder, M., Petrank, J. S.: Changes in rodent thyroid hormones and cyclic AMP following treatment with pineal indolic compounds. Arch. Int. Physiol. Biochem. 86, 353–361 (1978).Google Scholar
  82. Ogle, T. F., Kitay, J. I.: Effect of pinealectomy on adrenal function in vivo and in vitro in female rats. Endocrinology 98, 20–24 (1976).PubMedGoogle Scholar
  83. Orosz, A., Faiszt, J., Remenar-Balogh, I.: The effect of long lasting darkness and illumination on thyroid hormone fractions circulating in the blood of albino rats. Acta Biol. Acad. Sci. Hung., Suppl. 6, 38 (1964).Google Scholar
  84. Orsi, L., Denari, J. H., Nagle, C. A., Cardinali, D. P., Rosner, J. M.: Effects of melatonin on the synthesis of proteins by the rat hypothalamus hypophysis and pineal organ. J. Endocrin. 58, 131–132 (1973).Google Scholar
  85. Panda, J. N., Turner, C. W.: The role of melatonin in the regulation of thyrotrophin secretion. Acta Endocrin. 57, 363–373 (1968).Google Scholar
  86. Pavel, S., Matrescu, L., Petrescu, M.: Central corticotrophin inhibition by arginine vasotocin in the mouse. Neuroendocrinology 12, 371–375 (1973).PubMedGoogle Scholar
  87. Pelletier, G., LeClerc, E., Dube, D., Labrie, F., Puviani, R., Arimura, A., Schally, A. V.: Localization of growth hormone-releasing-inhibiting hormone (somatostatin) in the rat brain. Am. J. Anat. 142, 397–401 (1975).PubMedGoogle Scholar
  88. Petrescu, C., Simionescu, N.: Recherches expérimentales concernant les relations entre la pinéale et la médulla surrénale chez le rat albino. Stud. Cercet Endocrin. 21, 339–343 (1970).Google Scholar
  89. Porter, J. R., Heiman, M.: The effects of pineal indoles and a crude aqueous pineal extract on ACTH mediated corticosterone release by isolated adrenal cells. Life Sciences 20, 1363–1372 (1977).PubMedGoogle Scholar
  90. Quay, W. B.: Physiological significance of the pineal during adaption to shifts in photoperiod. Physiology and Behavior 5, 353–360 (1970).PubMedGoogle Scholar
  91. Quay, W. B.: Precocious entrainment and associated characteristics of activity patterns following pinealectomy and reversal of photoperiod. Physiology and behavior 5, 1281–1290 (1970 a).PubMedGoogle Scholar
  92. Reiss, M., Siderman, M. B., Plichta, E. S.: Spontaneous activity and pineal gland cell density. J. Endocrin. 37, 475–476 (1967).Google Scholar
  93. Reiter, R. J., Morgan, W. W., Talbot, J. A.: Seizures in rats induced by pinealectomy: influence of diazepam, chlordiazepoxide, diphenyl-hydantoin and pineal substances. Arch. Int. Pharm. Ther. 202, 219–230 (1973).Google Scholar
  94. Relkin, R.: Effects of pinealectomy and constant light and darkness on thyrotrophin levels in the pituitary and plasma of the rat. Neuroendocrinology 10, 46–52 (1972).PubMedGoogle Scholar
  95. Rowe, J. W., Richart, J. R., Klein, D. C., Reichlin, S.: Relation of the pineal gland and environmental lighting to thyroid function in the rat. Neuroendocrinology 6, 247–254 (1970).PubMedGoogle Scholar
  96. Schoenfeld, R. I.: Melatonin: effect of punished and non-punished operant behavior of the pigeon. Science 171, 1258–1260 (1971).PubMedGoogle Scholar
  97. Seibel, H. R., Schweisthal, M. R.: Relationship between the pineal gland, other endocrine glands and reproductive organs of single and parabiosed golden hamsters. Acta Endocrin. 74, 434–448 (1973).Google Scholar
  98. Singh, D. V., Turner, C. W.: Effect of light and darkness upon thyroid secretion rate and on the endocrine glands of female rats. Proc. Soc. Exp. Biol. Med. 131, 1296–1299 (1969).PubMedGoogle Scholar
  99. Smith, A. R., Ariëns Kappers, J.: Effect of pinealectomy, gonadectomy pCPA and pineal extracts on the rat parvocellular neurosecretory hypo-thalamic system: a fluorescence histochemical investigation. Brain Research 86, 353–371 (1975).PubMedGoogle Scholar
  100. Smith, J. A., Mee, T. J. X., Barnes, J. D.: Increased serum melatonin levels in chlorpromazine-treated psychiatric patients. Int. Symposium on the Pineal Gland, Abstract No. 60, Jerusalem, 1977.Google Scholar
  101. Tașcă, C., Petrescu, R., Ghinea, E., Grigoriu, I.: Effects of thyroxine cortisol, testosterone and stilboestrol on DNA synthesis in the in vitro cultivated pineal gland (an autoradiographic investigation with H3-thymidine). Rev. Roum. Endocrin. 8, 293–296 (1971).Google Scholar
  102. T’sang, D., Martin, J. B.: Effect of hypothalamic hormones on the concentration of adenosine 3′, 5′-monophosphate in incubated rat pineal glands. Life Sciences 19, 911–918 (1976).PubMedGoogle Scholar
  103. Urry, R. L., Ellis, L. C.: Monoamine oxidase activity of the hypothalamus and pituitary: Alterations after pinealectomy, changes in photoperiod or addition of melatonin in vitro. Experientia 31, 891–892 (1975).PubMedGoogle Scholar
  104. Urry, R. L., Barfuss, D. W., Ellis, L. C.: HIOMT activity of male rat pineal glands following hypophysectomy and HCG treatment. Biol. Reprod. 6, 238–243 (1972).PubMedGoogle Scholar
  105. Vaughan, M. K., Vaughan, G. M., Reiter, R. J., Benson, B.: Effect of melatonin and other pineal indoles on adrenal enlargement produced in male and female mice by pinealectomy, unilateral adrenalectomy, castration and cold stress. Neuroendocrinology 10, 139–154 (1972).PubMedGoogle Scholar
  106. Vermes, I., Molnár, D., Telegdy, G.: The effect of hypothalamic serotonin on compensatory adrenal function. Acta Physiol. Acad. Sci. Hung. 43, 27–32 (1973).PubMedGoogle Scholar
  107. Vermes, I., Molnár, D., Dull, G., Telegdy, G.: Functional relationship between cervical superior ganglia, pineal gland and hypothalamo-pituitary-adrenal system in rats. Acta Physiol. Acad. Sci. Hung. 45, 53–62 (1974).PubMedGoogle Scholar
  108. White, W. F., Hedlund, M. T., Weber, G. F., Rippel, R. H., Johnson, E. S., Wilber, J. F.: The pineal gland: A supplemental source of hypothalamic-releasing hormones. Endocrinology 94, 1422–1426 (1974).PubMedGoogle Scholar
  109. Wong, R., Whiteside, C. B. C.: The effect of melatonin on the wheel running activity of rats deprived of food. J. Endocrin. 40, 383–384 (1968).Google Scholar
  110. Wurtman, R. J., Altschule, M. D., Holmgren, U.: Effects of pinealectomy and of a bovine pineal extract in rats. Am. J. Physiol. 197, 108–110 (1959).PubMedGoogle Scholar
  111. Wurtman, R. J., Axelrod, J., Anton-Tay, F.: Inhibition of the metabolism of H3-melatonin by phenothiazines. J. Pharmacol, exp. Therap. 161, 367–372 (1968).Google Scholar
  112. Zanobini, A., Zanobini-Muciaccia, W.: Experimental hypertension in pineal-ectomized rats. Life Sciences 6, 2327–2331 (1967).Google Scholar
  113. Ziegels, J., Devecerski, V., Duchesne, P. Y.: Étude histochimique de la cortico-surrénale du rat après épiphysectomie. C.R. Soc. Biol. 170, 206–211 (1976).Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • I. Nir
    • 1
  1. 1.Department of Applied PharmacologyHebrew UniversityJerusalemIsrael

Personalised recommendations