Advertisement

Feedback Control of Pineal Function by Reproductive Hormones—A Neuroendocrine Paradigm

  • D. P. Cardinali
  • María Irene Vacas
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)

Summary

Secretions from the pineal gland participate in the control of reproductive function. In turn gonadal steroids, gonadotrophins and prolactin modify pineal metabolic activity and change the rate of synthesis of pineal hormones. This article reviews the major observations made regarding the pineal gland and its innervating neurons as target tissues for reproductive steroid and hypophyseal hormones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antón-Tay, F.: Pineal-brain relationships. In: The Pineal Gland (Woistenholme, G. E. W., Knight, J., eds.), pp. 213–227. London: Churchill. 1971.Google Scholar
  2. Antón-Tay, F., Wurtman, R. J.: Regional uptake of 3H-melatonin from blood and cerebrospinal fluid by rat brain. Nature 221, 474–475 (1969).CrossRefPubMedGoogle Scholar
  3. Axelrod, J.: The pineal gland: a neurochemical transducer. Science 184, 1341–1348 (1974).CrossRefPubMedGoogle Scholar
  4. Banerjee, S., Kerr, V., Winston, M., Kelleher, J. K., Margulis, L.: Melatonin: inhibition of microtubule-based oral morphogenesis in Stentor coeruleus J. Protozool. 19, 108–112 (1972).CrossRefGoogle Scholar
  5. Benson, B.: Current status of pineal peptides. Neuroendocrinology 24, 241–258 (1977).CrossRefPubMedGoogle Scholar
  6. Cady, P., Dillman, R. O.: Influence of catechol and indole amines upon pineal uptake of thyroxine. Neuroendocrinology 8, 228–234 (1971).CrossRefPubMedGoogle Scholar
  7. Cardinali, D. P.: Melatonin and the endocrine role of the pineal organ. In: Current Topics in Experimental Endocrinology (James, V. H. T., Martini, L., eds.), Vol. 2, pp. 107–128. New York: Academic Press. 1974.Google Scholar
  8. Cardinali, D. P.: Nuclear receptor estrogen complex in the pineal gland. Modulation by sympathetic nerves. Neuroendocrinology 24, 336–346 (1977).Google Scholar
  9. Cardinali, D. P., Freire, F.: Melatonin effects on brain. Interaction with microtubule protein, inhibition of fast axoplasmic flow and induction of crystaloid and tubular formations in the hypothalamus. Mol. Cell. Endocrinol. 2, 317–330 (1975).CrossRefPubMedGoogle Scholar
  10. Cardinali, D. P., Freire, F., Nagle, C. A., Rosner, J. M.: Effects of environmental lighting, superior cervical ganglionectomy, and adrenergic drugs on microtubule protein levels of the rat hypothalamus. Neuroendocrinology 19, 44–53 (1975 a).CrossRefPubMedGoogle Scholar
  11. Cardinali, D. P., Gomez, E., Rosner, J. M.: Changes in 3H-leucine incorporation into pineal proteins following estradiol or testosterone administration: involvement of the sympathetic superior cervical ganglion. Endocrinology 98, 849–858 (1976 a).CrossRefPubMedGoogle Scholar
  12. Cardinali, D. P., Hyyppä, M. T., Wurtman, R. J.: Fate of intracisternally-injected melatonin in the rat brain. Neuroendocrinology 12, 30–40 (1973 a).CrossRefPubMedGoogle Scholar
  13. Cardinali, D. P., Nagle, C. A., Denari, J. H., Bedes, G. D. P., Rosner, J. M.: Lack of effects of light on the rat pineal in organ culture. Gen. comp. Endocr. 21, 573–577 (1973 b).CrossRefPubMedGoogle Scholar
  14. Cardinali, D. P., Nagle, C. A., Freire, F., Rosner, J. M.: Effects of melatonin on neurotransmitter uptake and release by synaptosome-rich homogenates of the rat hypothalamus. Neuroendocrinology 18, 72–85 (1975 b).CrossRefPubMedGoogle Scholar
  15. Cardinali, D. P., Nagle, C. A., Gomez, E., Rosner, J. M.: Norepinephrine turnover in the rat pineal gland. Acceleration by estradiol and testosterone. Life Sci. 16, 1717–1724 (1975 c).CrossRefPubMedGoogle Scholar
  16. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Incorporation of 3H-leucine into proteins in the hypothalamus and anterior hypophysis. Effects of pinealectomy, superior cervical sympathectomy and continuous exposure to light or darkness. Neuroendocrinology 16, 74–83 (1974 a).CrossRefPubMedGoogle Scholar
  17. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Effects of estradiol on melatonin and protein synthesis in the rat pineal organ. Hormone Res. 5, 304–310 (1974 b).CrossRefPubMedGoogle Scholar
  18. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Changes in the pineal indole metabolism and plasma progesterone levels during the estrous cycle in ewes. Steroids Lipids Res. 5, 308–315 (1974 c).PubMedGoogle Scholar
  19. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Metabolic fate of androgens in the pineal organ. Uptake, binding to cytoplasmic proteins and conversion of testosterone into 5α-reduced metabolites. Endocrinology 95, 179–187 (1974 d).CrossRefPubMedGoogle Scholar
  20. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Aromatization of androgens to estrogens by the rat pineal gland. Experientia 30, 1022–1023 (1974 e).CrossRefGoogle Scholar
  21. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Gonadal steroids as modulators of the function of the pineal gland. Gen. comp. Endocr. 26, 50–53 (1975 d).CrossRefPubMedGoogle Scholar
  22. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Control of estrogen and androgen receptors in the rat pineal gland by catecholamine transmitter. Life Sci. 16, 81–91 (1975 e).CrossRefPubMedGoogle Scholar
  23. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Gonadotropin-and prolactin-induced increase of rat pineal hydroxyindole-O-methyl transferase. Involvement of the sympathetic nervous system. J. Endocrinol. 68, 341 to 342 (1976 b).CrossRefPubMedGoogle Scholar
  24. Cardinali, D. P., Nagle, C. A., Rosner, J. M.: Pineal gonads relationships. Nature of the feedback mechanism at the level of the pineal gland. In: Neuroendocrine Regulation of Fertility (Anand Kumar, T. C., ed.), pp. 206–214. Basel: Karger. 1976 c.Google Scholar
  25. Cardinali, D. P., Vacas, M. I.: Progesterone-induced decrease of pineal protein synthesis in rats. Possible participation in estrous-related changes of pineal function. J. Neural Transm. (1978, in press).Google Scholar
  26. Cardinali, D. P., Wurtman, R. J.: Control of melatonin synthesis in the pineal organ. In: Frontiers of Pineal Physiology (Altschule, M. D., ed.), pp. 12–41. Cambridge, Mass.: The MIT Press. 1975.Google Scholar
  27. Clark, J. H., Peck, E. J.: Nuclear retention of receptor-oestrogen complex and nuclear acceptor sites. Nature 260, 635–637 (1976).CrossRefPubMedGoogle Scholar
  28. David, G. F. X., Umberkoman, B., Kumar, K., Anand Kumar, T. C.: Neuro-endocrine significance of the pineal. In: Brain-Endocrine Interaction II (Knigge, K., Scott, D., Kobayashi, Y., Ishii, T., eds.), pp. 365–375. Basel: Karger. 1975.Google Scholar
  29. Deguchi, T.: Role of the beta-adrenergic receptor in the elevation of adenosine cyclic 3′, 5′-monophosphate and induction of serotonin N-acetyltransferase in rat pineal glands. Mol. Pharmacol. 9, 184–190 (1973).PubMedGoogle Scholar
  30. Deguchi, T., Axelrod, J.: Supersensitivity and subsensitivity of the beta-adrenergic receptor in pineal gland regulated by catecholamine transmitter. Proc. natl. Acad. Sci. U.S.A. 70, 2411–2414 (1973).CrossRefPubMedCentralPubMedGoogle Scholar
  31. Demoulin, A., Hudson, B., Franchimont, P., Legros, J. J.: Arginine vasotocin does not affect gonadotrophin secretion in vitro. J. Endocrinol. 72, 105–106 (1977).CrossRefPubMedGoogle Scholar
  32. Deussen-Schmitter, M., Garweg, G., Schwabedal, P. E., Wartenberg, H.: Simultaneous changes of the perivascular contact area and HIOMT activity in the pineal organ after bilateral adrenalectomy in the rat. Anat. Embryol. 149, 297–305 (1976).CrossRefPubMedGoogle Scholar
  33. Dunaway, J. E.: Alterations in the timing of PMS-induced ovulation following pinealectomy. Neuroendocrinology 5, 281–289 (1969).CrossRefPubMedGoogle Scholar
  34. Duraiswami, S., Franchimont, P., Boucher, S., Thieblot, M.: Immunoreactive luteinizing hormone-releasing hormone (LH-RH) in the bovine pineal gland. Horm. Metab. Res. 8, 232–233 (1976).CrossRefPubMedGoogle Scholar
  35. Ebels, I., Prop, N.: A study on the effects of melatonin on the gonads, the estrous cycle, and the pineal organ of the rat. Acta Endocrinol. (Kbh.) 49, 567–577 (1965).Google Scholar
  36. Eränkö, O., Rechardt, L., Eränkö, L., Cunningham, A.: Light and electron microscopic histochemical observations on cholinesterase-containing sympathetic nerve fibres in the pineal body of the rat. Histochem. J. 2, 479–489 (1970).CrossRefPubMedGoogle Scholar
  37. Fiske, V. M., Huppert, L. C.: Melatonin action on pineal varies with photo-period. Science 162, 279 (1968).CrossRefPubMedGoogle Scholar
  38. Fiske, V. M., Pound, J., Putnam, J.: Effect of light on the weight of the pineal organ in hypophysectomized, gonadectomized, adrenalectomized or thiouracil-fed rats. Endocrinology 71, 130–131 (1962).CrossRefPubMedGoogle Scholar
  39. Freire, F., Cardinali, D. P.: Effects of melatonin treatment and environmental lighting on the ultrastructural appearance, melatonin synthesis, norepinephrine turnover and microtubule protein content of the rat pineal gland. J. Neural Transm. 37, 237–257 (1975).CrossRefPubMedGoogle Scholar
  40. Hanukoglu, I., Karavolas, H. J., Goy, R. W.: Progesterone metabolism in the pineal gland, brain stem, thalamus and corpus callosum of the femaie rat. Brain Res. 125, 313–324 (1977).CrossRefPubMedGoogle Scholar
  41. Hedlund, L., Lishko, M. M., Rollag, M. D., Niswender, G. D.: Melatonin: daily cycle in plasma and cerebrospinal fluid of calves. Science 195, 686–687 (1977).CrossRefPubMedGoogle Scholar
  42. Herbert, J.: Initial observations on pinealectomized ferrets kept for long periods in either daylight or artificial illumination. J. Endocrinol. 55, 591–597 (1972).CrossRefPubMedGoogle Scholar
  43. Hoffmann, J. C., Cullin, A. M.: Effects of pinealectomy and constant light on the estrous cycle of female rats. Neuroendocrinology 17, 167–174 (1975).CrossRefGoogle Scholar
  44. Hoffmann, K.: Testicular involution in short photoperiods inhibited by melatonin. Naturwissenschaften 61, 364–365 (1974).CrossRefPubMedGoogle Scholar
  45. Hoffmann, K., Kuederling, I.: Antigonadal effects of melatonin in pinealectomized Djungarian hamsters. Naturwissenschaften 64, 339–340 (1977).CrossRefPubMedGoogle Scholar
  46. Houssay, A. B., Barceló, A. C.: Effect of estrogens and progesterone upon the biosynthesis of melatonin by pineal gland. Experientia 28, 478–479 (1972).CrossRefPubMedGoogle Scholar
  47. Hyyppä, M. T., Cardinali, D. P., Baumgarten, H., Wurtman, R. J.: Rapid accumulation of 3H-serotonin in brains of rats receiving 3H-tryptophan. Effects of 5, 6-dihydroxytryptamine or female sex hormones. J. Neural Transm. 34, 111–124 (1973a).CrossRefPubMedGoogle Scholar
  48. Hyyppä, M. T., Cardinali, D. P., Wurtman, R. J.: Sex-dependent increase in pineal hydroxyindole-O-methyl transferase activity after a single intraventricular injection of 6-hydroxydopamine to newborn rats. Neuroendocrinology 12, 274–283 (1973 b).Google Scholar
  49. Ilinerova, H.: Effect of estradiol on the activity of serotonin-N-aeetyltransferase in the rat epiphysis. Endocrinol. Exp. (Bratisl.) 9, 141–148 (1975).Google Scholar
  50. Jackson, I. M. D., Saperstein, R., Reichlin, S.: Thyrotropin releasing hormone (TRH) in pineal and hypothalamus of the frog: effect of season and illumination. Endocrinology 100, 97–100 (1977).CrossRefPubMedGoogle Scholar
  51. Kao, L. W. L., Weisz, J.: Release of gonadotrophin-releasing hormone (GnRH) from isolated, perifused medial basal hypothalamus by melatonin. Endocrinology 100, 1723–1726 (1977).CrossRefPubMedGoogle Scholar
  52. Kappers, J. A.: Innervation of the pineal organ: Phylogenese aspects and comparison of the neural control of the mammalian pineal with that of other neuroendocrine systems. In: Subcellular Organization and Function in Endocrine Tissues (Heller, H., Lederis, K., eds.), pp. 27–48. London: Cambridge University Press. 1971.Google Scholar
  53. Kinson, G. A., Peat, F.: The influence of illumination, melatonin and pinealectomy on testicular function in the rat. Life Sci. 10 (part I), 259–269 (1971).CrossRefGoogle Scholar
  54. Klein, D. C., Weller, J. L.: Melatonin synthesis: adenosine-3′-5′-monophos-phate and norepinephrine stimulate N-acetyltransferase. Science 168, 978–980 (1970).Google Scholar
  55. Lerner, A. B., Case, J. D.: Pigment cell regulatory factors. J. invest. Dermatol. 32, 211–221 (1959).CrossRefPubMedGoogle Scholar
  56. Luttge, W. G., Wallis, C. G.: In vitro accumulation and saturation of 3H-progestins in selected brain regions and in the adenohypophysis, uterus and pineal of the female rat. Steroids 22, 493–502 (1973).CrossRefPubMedGoogle Scholar
  57. Lynch, H. J., Ho, M., Wurtman, R. J.: The adrenal medulla may mediate the increase in pineal melatonin synthesis induced by stress but not that caused by exposure to darkness. J. Neural Transm. 40, 87–98 (1977).CrossRefPubMedGoogle Scholar
  58. Marks, B., Wu, T. K., Goldman, H.: Soluble estrogen binding protein in the rat pineal gland. Res. Comm. Chem. Pathol. Pharmacol. 3, 1089–1103 (1972).Google Scholar
  59. Nagle, C. A., Cardinali, D. P., Laborde, N. P., Rosner, J. M.: Sex-dependent changes in rat retinal hydroxyindole-O-methyl transferase. Endocrinology 94, 294–297 (1974).CrossRefPubMedGoogle Scholar
  60. Nagle, C. A., Neuspiller, N., Cardinali, D. P., Rosner, J. M.: Uptake and effects of 17β-estradiol on pineal hydroxyindole-O-methyl transferase (HIOMT) activity. Life Sci. 11 (part II), 1105–1116 (1972).CrossRefGoogle Scholar
  61. Neill, J. D., Smith, M. S.: Pituitary-ovarian interrelationships in the rat. In: Current Topics in Experimental Endocrinology (James, V. H. T., Martini, L., eds.), Vol. 2, pp. 73–106. New York: Academic Press. 1974.Google Scholar
  62. Nir, I., Kaiser, N., Hirschmann, N., Sulman, F.: The effect of 17β-estradiol on pineal metabolism. Life Sci. 9, 851–858 (1970).CrossRefGoogle Scholar
  63. O’Dea, R. F., Zatz, M.: Catecholamine-stimulated cyclic GMP accumulation in the rat pineal: apparent presynaptic site of action. Proc. natl. Acad. Sci. U.S.A. 73, 3398–3402 (1976).CrossRefPubMedCentralPubMedGoogle Scholar
  64. Pavel, S., Calb, M., Georgescu, M.: Reversal of the effects of pinealectomy on the pituitary prolactin content in mice by very low concentration of vasotocin injected into the third ventricle. J. Endocrinol. 66, 289–290 (1975).CrossRefPubMedGoogle Scholar
  65. Pellegrino de Iraldi, A., Rodriguez de Lores Arnaiz, G.: Neural regulation of acetylcholinesterase in the superior cervical ganglia and the pineal gland of the rat. Brain Res. 113, 435–440 (1976).CrossRefGoogle Scholar
  66. Preslock, J. P.: Regulation of pineal enzymes by photoperiod, gonadal hormones and melatonin in Coturnix quail. Horm. Res. 7, 108–117 (1976).CrossRefPubMedGoogle Scholar
  67. Quay, W. B.: Pineal Chemistry. Springfield: C. C Thomas. 1974.Google Scholar
  68. Reiter, R. J.: The Pineal. 1977. Montreal: Eden Press. 1977.Google Scholar
  69. Reiter, R. J., Blask, D. E., Johnson, L. Y., Rudeen, P. K., Vaughan, M. K., Waring, P. J.: Melatonin inhibition of reproduction in the male hamster: its dependency on time of day of administration and on an intact and sympathetically innervated pineal gland. Neuroendocrinology 22, 107 to 116 (1976).CrossRefPubMedGoogle Scholar
  70. Reiter, R. J., Vaughan, M. K.: Pineal antigonadotrophic substances. Polypeptides and indoles. Life Sci. 21, 159–172 (1977).CrossRefGoogle Scholar
  71. Reiter, R. J., Vaughan, M. K., Blask, D. E., Johnson, L. Y.: Melatonin: its inhibition of pineal antigonadotrophic activity in male hamsters. Science 185, 1169–1171 (1974).CrossRefPubMedGoogle Scholar
  72. Reiter, R. J., Vaughan, M. K., Vaughan, G. M., Sorrentino, S., jr., Donofrio, R. J.: The pineal as an organ of internal secretion. In: Frontiers of Pineal Physiology (Altschule, M. D., ed.), pp. 54–174. Cambridge, Mass.: The MIT Press. 1975.Google Scholar
  73. Relkin, R.: Relative efficacy of pinealectomy and amygdaloid lesions in advancing puberty. Endocrinology 88, 415–418 (1971).CrossRefPubMedGoogle Scholar
  74. Relkin, R.: The Pineal. Montreal: Eden Press. 1976.Google Scholar
  75. Romero, J. A., Zatz, M., Axelrod, J.: Beta-adrenergic stimulation of pineal N-acetyltransferase: adenosine 3′, 5′-cyclic monophosphate stimulates both RNA and protein synthesis. Proc. natl. Acad. Sci. U.S.A. 72, 2107–2111 (1975 a).CrossRefPubMedCentralPubMedGoogle Scholar
  76. Romero, J. A., Zatz, M., Kebabian, J. W., Axelrod, J.: Circadian cycles in binding of 3H-alprenol to β-adrenergic receptor sites in rat pineal. Nature 258, 435–436 (1975 b).CrossRefPubMedGoogle Scholar
  77. Ronnekleiv, O. K., Krulich, L., McCann, S. M.: An early morning surge of prolactin in the male rat and its abolition by pinealectomy. Endocrinology 92, 1339–1342 (1973).CrossRefPubMedGoogle Scholar
  78. Ronnekleiv, O. K., McCann, S. M.: Effects of pinealectomy, anosmia and blinding alone or in combination on gonadotropin secretion and pituitary and target gland weight in intact and castrated male rats. Neuroendocrinology 19, 97–114 (1975).CrossRefPubMedGoogle Scholar
  79. Sakai, K. K., Marks, B. H.: Adrenergic effects on pineal cell membrane potential. Life Sci. 11 (part I), 285–291 (1972).CrossRefGoogle Scholar
  80. Sakai, K. K., Schneider, D., Felt, B., Marks, B. H.: The effect of α-MSH on β-adrenergic receptor mechanisms in the rat pineal. Life Sci. 19, 1145 to 1150 (1976).CrossRefPubMedGoogle Scholar
  81. Scardapane, L., Cardinali, D. P.: Effect of estradiol and testosterone on catechol-O-methyl transferase activity of rat superior cervical ganglion, pineal gland, anterior hypophysis and hypothalamus. J. Neural Transm. 40, 81–86 (1977).CrossRefPubMedGoogle Scholar
  82. Stumpf, W. E., Sar, M., Keefer, D. A., Martinez-Vargas, M. C.: The anatomical substrate of neuroendocrine regulation as defined by auto-radiography with 3H-estradiol, 3H-testosterone, 3H-dihydrotestosterone and 3H-progesterone. In: Neuroendocrine Regulation of Fertility (Anand Kumar, T. C., ed.), pp. 46–56. Basel: Karger. 1976.Google Scholar
  83. Trentini, G. P., Gaetani, C. F., Barbieri-Palmieri, F.: The role of sympathetic innervation in pineal-pituitary feedback. Blocking of pineal changes induced in the rat by experimental hypergonadotrophinaemia by chronic treatment with bretylium or guanethidine. Ann. Endocrinol. 34, 261–270 (1973).Google Scholar
  84. Tsang, D., Martin, J. B.: Effect of hypothalamic hormones on the concentration of adenosine 3′, 5′-monophosphate in incubated rat pineal glands. Life Sci. 19, 911–918 (1976).CrossRefPubMedGoogle Scholar
  85. Turek, F. W.: Antigonadal effect of melatonin in pinealectomized and intact male hamsters. Proc. Soc. exp. Biol. Med. 155, 31–34 (1977).CrossRefPubMedGoogle Scholar
  86. Urry, R. L., Dougherty, K. A., Frehn, J. L., Ellis, L. C: Factors other than light affecting the pineal gland. Hypophysectomy, testosterone, dihydro-testosterone, estradiol, cryptorchidism and stress. Amer. Zool. 16, 79–91 (1976).Google Scholar
  87. Vaughan, M. K., Blask, D. E., Vaughan, G. M., Reiter, R. J.: Dose-dependent prolactin releasing activity of arginine vasotocin in intact and pinealectomized, estrogen-progesterone treated adult male rats. Endocrinology 99, 1319–1322 (1976).CrossRefPubMedGoogle Scholar
  88. Wallen, E. P., Yochim, J. M.: Pineal HIOMT activity in the rat: effect of ovariectomy and hormone replacement. Biol. Reprod. 10, 474–479 (1974 b).CrossRefPubMedGoogle Scholar
  89. Weiss, B., Crayton, J.: Gonadal hormones as regulators of pineal adenyl cyclase activity. Endocrinology 87, 527–533 (1970).CrossRefPubMedGoogle Scholar
  90. White, W. F., Hedlund, M. T., Weber, G. F., Rippel, R. H., Johnson, E. S., Wilber, J. F.: The pineal gland: a supplemental source of hypothalamic releasing hormones. Endocrinology 94, 1422–1426 (1974).CrossRefPubMedGoogle Scholar
  91. Wurtman, R. J., Axelrod, J., Potter, L. T.: The uptake of 3H-melatonin in endocrine and nervous tissues and the effects of constant light exposure. J. Pharmacol, exp. Ther. 143, 314–318 (1964).Google Scholar
  92. Wurtman, R. J., Axelrod, J., Snyder, S. H.: Changes in the enzymatic synthesis of melatonin in the pineal during the estrous cycle. Endocrinology 76, 798–800 (1965).CrossRefPubMedGoogle Scholar
  93. Wurtman, R. J., Shein, H. M., Axelrod, J., Larin, F.: Incorporation of 14C-tryptophan into 14C-protein by cultured rat pineals: stimulation by L-norepinephrine. Proc. nati. Acad. Sci. U.S.A. 62, 749–755 (1969).CrossRefGoogle Scholar
  94. Zatz, M., O’Dea, R. F.: Regulation of protein kinase in rat pineal: increased Vmax in supersensitive glands. J. cyclic Nucleotide Res. 2, 427–439 (1976).PubMedGoogle Scholar
  95. Zweens, J.: Influence of the estrous cycle and ovariectomy on the phospholipid content of the pineal gland in the rat. Nature 197, 1114–1115 (1963).CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • D. P. Cardinali
    • 1
  • María Irene Vacas
    • 1
  1. 1.Centro de Estudios Farmacológicos y de Principios Naturales (CEFAPRIN)Buenos AiresArgentina

Personalised recommendations