Advertisement

Pineal Peptides

  • B. Benson
  • I. Ebels
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)

Summary

In pineal extracts several activities have been observed which cannot be explained on the basis of their content of melatonin or other pineal indoles to which an antigonadotropic activity is ascribed. The significance of structurally identified and unidentified substances is not fully understood. The list includes a neurohypophysial peptide, vasotocin (AVT), hypo-thalamic releasing factors and certain unidentified substances including the antigonadotropin under investigation in our laboratory. Our initial experiments demonstrated the presence of a non-melatonin antigonadotropin (PAG) in partially purified extracts of bovine, ovine, rat and human pineals. Purification by ion exchange chromatography and amino acid analyses have shown that this substance is not AVT. Recent purification studies include paper chromatography and high performance chromatography as final steps. It is concluded that if the active principle in a peptide, or contains a peptide moiety important for the biological activity, it may be present only in minute amounts in the puriest fractions derived and the quantities of recoverable material may be similar to those amounts of releasing factors recoverable from hypothalamic tissue. It is anticipated that large scale preparative methods will be required for structural determination. High performance chromatography may prove to be extremely useful in future studies.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariëns Kappers, J.: The mammalian pineal organ. J. Neurovisc. Relat., Suppl. IX, pp. 140–184. Wien-New York: Springer. 1969.Google Scholar
  2. Bensinger, R., Vaughan, M. K., Klein, D. C.: Isolation of a non-melatonin lipophilic antigonadotrophic factor from the bovine pineal gland. Fed. Proc. 32, 225 (1973).Google Scholar
  3. Benson, B., Grosso, D. S., Rosenblum, I. Y., Bressler, R.: Circadian rhythm in pineal taurine levels in the rat: effects of optic enucleation, constant light or superior cervical ganglionectomy. Abs. of 59th Ann. Meet. Endocrine Soc, p. 491 (1977).Google Scholar
  4. Benson, B., Matthews, M. J., Hadley, M. E., Powers, S., Hruby, V. J.: Differential localization of antigonadotropic and vasotocic activities in bovine and rat pineal. Life Sci. 19, 747–754 (1976 a).CrossRefPubMedGoogle Scholar
  5. Benson, B., Matthews, M. J., Hruby, V. J.: Characterization and effects of a bovine pineal antigonadotropic peptide. Am. Zool. 16, 17–24 (1976 b).Google Scholar
  6. Benson, B., Matthews, M. J., Orts, R. J.: Presence of an antigonadotropic substance in rat pineal incubation media. Life Sci. 11, 669–677 (1972 a).CrossRefGoogle Scholar
  7. Benson, B., Matthews, M. J., Rodin, A. E.: A melatonin-free extract of bovine pineal with antigonadotropic activity. Life Sci. 10, 607–612 (1971)CrossRefGoogle Scholar
  8. Benson, B., Matthews, M. J., Rodin, A. E.: Studies on a non-melatonin pineal antigonadotropin. Acta Endocrinol. 69, 257–266 (1972 b).PubMedGoogle Scholar
  9. Benson, B., Orts, R. J.: Regulation of ovarian growth by the pineal gland. In: Regulation of Organ and Tissue Growth. New York: Academic Press. 1972.Google Scholar
  10. Blask, D. E., Vaughan, M. K., Reiter, R. J., Johnson, L. Y., Vaughan, G. M.: Prolactin-releasing and release-inhibiting factor activities in the bovine, rat and human pineal gland: in vitro and in vivo studies. Endocrinology 99, 152–162 (1976).CrossRefPubMedGoogle Scholar
  11. Bradford, H. F., Davison, A. N., Wheeler, G. H. T.: Taurine and synaptic transmission. In: Taurine, pp. 303–310. New York: Raven Press. 1976.Google Scholar
  12. Cheesman, D. W.: Structure elucidation of a gonadotropin inhibiting substance from the bovine pineal gland. Biochim. Biophys. Acta 207, 247–253 (1970).CrossRefPubMedGoogle Scholar
  13. Cheesman, D. W., Fariss, B. L.: Isolation and characterization of a gonado-tropin-inhibiting substance from the bovine pineal gland. Proc. Soc. Exp. Biol. Med. 133, 1254–1256 (1970).CrossRefPubMedGoogle Scholar
  14. Cheesman, D. W., Forsham, P. H.: Inhibition of induced ovulation by a highly purified extract of the bovine pineal gland. Proc. Soc. Exp. Biol. Med. 146, 722–724 (1974 a).CrossRefPubMedGoogle Scholar
  15. Cheesman, D. W., Forsham, P. H.: Action of a gonadotropin inhibitor from the bovine pineal gland. Proc. Soc. Exp. Biol. Med. 147, 438–440 (1974 b).CrossRefPubMedGoogle Scholar
  16. Ebels, I.: Pineal factors other than melatonin. Gen. and Comp. Endocrinol. 25, 189–198 (1975).CrossRefGoogle Scholar
  17. Ebels, I.: Isolation of avian and mammalian pineal indoles and anti-gonadotropic factors. Amer. Zool. 16, 5–15 (1976).Google Scholar
  18. Ebels, I., Benson, B., Bria, C. F., McDonnell, D., Chang, S., Hruby, V. J.: Location by paper chromatography of compensatory ovarian hypertrophy (COH) inhibiting activity in acetic acid extracts of bovine pineals. J. Neural Transm. (in press).Google Scholar
  19. Ebels, I., Benson, B., Matthews, M. J.: Localization of a sheep pineal anti-gonadotropin. Anal. Biochem. 56, 546–565 (1973).CrossRefPubMedGoogle Scholar
  20. Ebels, I., Horwitz-Bresser, A. E. M.: Separation of pineal extracts by gel filtration. IV. Isolation, location and identification from sheep pineals of three indoles identical with 5-hydroxytryptophol, 5-methoxytryptophol and melatonin. J. Neural Transm. 38, 31–41 (1976).CrossRefPubMedGoogle Scholar
  21. Ebels, I., Moszkowska, A., Scemama, A.: Étude in vitro des extraits épiphysaires fractionnés. Résultats préliminaires. C.R. Acad. Sci. (Paris) 260, 5120–5129 (1965).Google Scholar
  22. Jackson, I. M. D., Saperstein, R., Reichlin, S.: Thyrotropin releasing hormone (TRH) in pineal and hypothalamus of the frog: effect of season and illumination. Endocrinology 100, 97–100 (1977).CrossRefPubMedGoogle Scholar
  23. Joseph, S. A.: Seasonal variation in luteinizing hormone releasing hormone (LHRH) content of rat pineal gland. Anat. Rec. 184, 439 (1976).Google Scholar
  24. Kitay, J. I., Altschule, M. D.: The pineal gland. A review of the physiologic literature. Cambridge, Mass.: Harvard University Press. 1954.Google Scholar
  25. Legros, J. J., Louis, F., Demoulin, A., Franchimont, P.: Immunoreactive neurophysins and vasotocin in human fetal pineal glands. J. Endocrinol. 69, 289–290 (1976).CrossRefPubMedGoogle Scholar
  26. Lerner, A. B., Case, J. D., Heinzelman, R. V.: Structure of melatonin. J. Am. Chem. Soc. 81, 6084–6085 (1959).CrossRefGoogle Scholar
  27. Lerner, A. B., Case, J. D., Takahashi, Y., Lee, T. H., Mori, W.: Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80, 2587 (1958).CrossRefGoogle Scholar
  28. Matthews, M. J., Benson, B.: Inactivation of pineal antigonadotropin by proteolytic enzymes. J. Endocrinol. 56, 339–340 (1973).CrossRefPubMedGoogle Scholar
  29. Matthews, M. J., Benson, B., Rodin, A. E.: Antigonadotropic activity in a melatonin-free extract of human pineal glands. Life Sci. 10, 1375–1379 (1971).CrossRefGoogle Scholar
  30. Milcu, S. M., Pavel, S., Neacsu, C.: Biological and Chromatographic characterization of a Polypeptide with pressor and oxytocic activities isolated from bovine pineal gland. Endocrinology 72, 563–566 (1963).CrossRefGoogle Scholar
  31. Minneman, K. P., Wurtman, R. J.: Effects of pineal compounds on mammals. Life Sci. 17, 1189–1200 (1975).CrossRefPubMedGoogle Scholar
  32. Moszkowska, A., Ebels, I.: A study of the antigonadotropic action of synthetic arginine vasotocin. Experientia 24, 610–611 (1968).CrossRefPubMedGoogle Scholar
  33. Moszkowska, A., Ebels, I.: The influence of the pineal body on the gonado-tropic function of the hypophysis. J. Neurovisc. Relat., Suppl. X, pp. 160–176. Wien-New York: Springer. 1971.Google Scholar
  34. Nir, I., Briel, G., Dames, W., Neuhoff, V.: Rat pineal free amino acids diurnal rhythm and effect of light. Arch. Internat. Physiol. Biochem. 81, 617–627 (1973).CrossRefGoogle Scholar
  35. Orts, R. J.: Reduction of serum LH and testosterone in male rats by a partially purified bovine pineal extract. Biol. of Reprod. 16, 249–254 (1977).CrossRefGoogle Scholar
  36. Orts, R. J., Benson, B.: Inhibitory effects on serum and pituitary LH by a melatonin-free extract of bovine pineal glands. Life Sci. 12, 513–519 (1973).CrossRefGoogle Scholar
  37. Orts, R. J., Benson, B., Cook, B. F.: LH inhibitory properties of aqueous extracts of rat pineal glands. Life Sci. 14, 1501–1510 (1974 a).CrossRefPubMedGoogle Scholar
  38. Orts, R. J., Benson, B., Cook, B. F.: Some antigonadotropic effects of melatonin-free bovine pineal extracts. Acta Endocrinol. 76, 438–448 (1974 b).PubMedGoogle Scholar
  39. Orts, R. J., Kocan, K. M., Yamishani, W. P.: Fertility control in female rats by bovine pineal gland extracts. Life Sci. 17, 531–538 (1975).CrossRefPubMedGoogle Scholar
  40. Pavel, S.: Evidence for the pressure of lysine vasotocin in the pig pineal. Endocrinology 77, 812–817 (1965).CrossRefPubMedGoogle Scholar
  41. Pavel, S.: Endocrine functions of arginine vasotocin from mammalian pineal gland. Gen. Comp. Endocrinol. 9, 481–485 (1967).Google Scholar
  42. Pavel, S.: Evidence for the ependymal origin of arginine vasotocin in the bovine pineal gland. Endocrinology 89, 613–614 (1971).CrossRefPubMedGoogle Scholar
  43. Pavel, S.: Vasotocin content in the pineal gland of fetal, newborn and adult male rats. J. Endocrinol. 66, 283–284 (1975).CrossRefPubMedGoogle Scholar
  44. Pavel, S., Coculescu, M.: Arginine vasotocin-like activity of cerebrospinal fluid induced by hypertonic saline injected into the third cerebral ventricle of cats. Endocrinology 91, 825–827 (1972).CrossRefGoogle Scholar
  45. Pavel, S., Dorcescu, M., Petrescu-Holban, R., Ghinea, E.: Biosynthesis of a vasotocin-like peptide in cell cultures from pineal glands of human fetuses. Sci. 181, 1252–1253 (1973 a).CrossRefGoogle Scholar
  46. Pavel, S., Dumitru, I., Klepsch, I.: A gonadotropin inhibiting principle in the pineal of human fetuses. Evidence for its identity with arginine vasotocin. Neuroendocrinology 13, 41–46 (1973/74).CrossRefPubMedGoogle Scholar
  47. Pavel, S., Petrescu, S.: Inhibition of gonadotropin by a highly purified pineal peptide and by synthetic arginine vasotocin. Nature (London) 212, 1054 (1966).CrossRefGoogle Scholar
  48. Pavel, S., Petrescu, M., Vicoleanriy N.: Evidence of central gonadotropin inhibiting activity of arginine vasotocin in the female mouse. Neuroendocrinology 11, 370–374 (1973 b).CrossRefPubMedGoogle Scholar
  49. Quay, W. B.: Pineal chemistry in cellular and physiological mechanisms. Springfield, Ill.: Ch. C Thomas. 1974.Google Scholar
  50. Reinharz, A. C., Czernicbow, P., Vallotton, M. B.: Neurophysin-like protein in bovine pineal gland. J. Endocrinol. 62, 35–44 (1974).CrossRefPubMedGoogle Scholar
  51. Reinharz, A. C., Czernichow, P., Vallotton, M. B.: Neurophysins I and II from the bovine posterior pituitary lobe and neurophysin-like proteins from bovine pineal gland. Ann. N. Y. Acad. Sci. 248, 172–183 (1975).CrossRefPubMedGoogle Scholar
  52. Reinharz, A. C., Vallotton, M. B.: Presence of two neurophysins in the human pineal gland. Endocrinology 100, 994–1001 (1977).CrossRefPubMedGoogle Scholar
  53. Reiter, R. J.: Comparative physiology: pineal gland. Ann. Rev. Physiol. 35, 305–328 (1973).CrossRefGoogle Scholar
  54. Reiter, R. J.: Endocrine rhythms associated with pineal function. Adv. Exp. Med. Biol. 54, 43–78 (1975 a).CrossRefPubMedGoogle Scholar
  55. Reiter, R. J.: Exogenous and endogenous control of the annual reproductive cycle in the male golden hamster. Participation of the pineal gland. J. Exp. Zool. 191, 111–120 (1975 b).CrossRefPubMedGoogle Scholar
  56. Reiter, R. J., Fraschini, F.: Endocrine aspects of the mammalian pineal gland: a review. Neuroendocrinology 5, 219–255 (1969).CrossRefPubMedGoogle Scholar
  57. Reiter, R. J., Vaughan, M. K., Vaughan, G. M., Sorrentino, S., jr., Donoino, R. J.: The pineal gland as an organ of internal secretion, in: Frontiers of Pineal Physiology. Cambridge, Mass.: M.I.T. Press. 1975.Google Scholar
  58. Relkin, R.: The Pineal. Montreal: Eden Press. 1976.Google Scholar
  59. Rosenbloom, A. A., Fisher, D. A.: Radioimmunoassayable AVT and AVP in adult mammalian brain tissue: comparison of normal and Brattleboro rats. Neuroendocrinology 17, 354–361 (1975 a).CrossRefPubMedGoogle Scholar
  60. Rosenbloom, A. A., Fisher, D. A.: Arginine vasotocin in the rabbit sub-commissural organ. Endocrinology 96, 1038–1039 (1975 b).CrossRefPubMedGoogle Scholar
  61. Rosenblum, I. Y., Benson, B., Hruby, V. J.: Chemical differences between bovine pineal antigonadotropin and arginine vasotocin. Life Sci. 18, 1367–1374 (1976).CrossRefPubMedGoogle Scholar
  62. Rosenblum, I. Y., Benson, B., Bria, C. F., McDonnell, D., Hruby, V. J.: Localization and chemical characterization of a partially purified bovine pineal antigonadotropin. J. Neural Transm. (in press).Google Scholar
  63. Smith, M. L., jr., Orts, R. J., Benson, B.: Effects of non-melatonin pineal factors in the PMS-stimulated immature rat. Anat. Rec. 172, 408 (1972).Google Scholar
  64. Thiéblot, L., Blasie, S., Couquelet, J.: Recherche de derives indoliques dans les extraits de glande pineale. C.R. Soc. Biol. (Paris) 161, 295–297 (1967).Google Scholar
  65. Vaughan, M. K., Reiter, R. J., McKinney, T., Vaughan, G. M.: Inhibition of growth of gonadal dependent structures by arginine vasotocin and purified bovine pineal fractions in immature mice and hamsters. Int. J. Fertil. 19, 103–106 (1974 a).PubMedGoogle Scholar
  66. Vaughan, M. K., Reiter, R. J., Vaughan, G. M.: Fertility patterns in female mice following treatment with arginine vasotocin or melatonin. Int. J. Fertil. 21, 65–68 (1976 c).PubMedGoogle Scholar
  67. Vaughan, M. K., Vaughan, G. M., Blask, D. E., Barnett, M. P., Reiter, R. J.: Arginine vasotocin: structure activity relationships and influence on gonadal growth and function. Am. Zool. 16, 25–34 (1976 a).Google Scholar
  68. Vaughan, M. K., Vaughan, G. M., Klein, D. C.: Arginine vasotocin: effects on development of reproductive organs. Science 186, 938–939 (1974 b).CrossRefPubMedGoogle Scholar
  69. Vaughan, M. K., Vaughan, G. M., Reiter, R. J.: Inhibition of HCG-induced ovarian and uterine growth in the mouse by synthetic arginine vasotocin. Experientia 31, 862–863 (1975).CrossRefPubMedGoogle Scholar
  70. Vaughan, M. K., Vaughan, G. M., Reiter, R. J.: Inhibition of human chorionic gonadotropin-induced hypertrophy of the ovaries and uterus in immature mice by some pineal indoles, 6-hydroxymelatonin and arginine vasotocin. J. Endocrinol. 68, 397–400 (1976 b).CrossRefPubMedGoogle Scholar
  71. White, W. F., Hedlung, M. T., Weber, G. F., Rippel, R. H., Johnson, E. S., Wilbes, J. F.: The pineal gland: a supplemental source of hypothalamic-releasing hormones. Endocrinology 94, 1422–1426 (1974).CrossRefPubMedGoogle Scholar
  72. Wolstenholme, G. E. W., Knight, J.: The pineal gland: a Ciba Foundation Symposium. Edinburgh-London: Churchill Livingstone. 1971.CrossRefGoogle Scholar
  73. Wurtman, R. J., Axelrod, J., Kelly, D. E.: The pineal. New York: Academic Press. 1968.Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • B. Benson
    • 1
  • I. Ebels
    • 2
  1. 1.Department of AnatomyUniversity of ArizonaTucsonUSA
  2. 2.The Department of Organic ChemistryState University of UtrechtThe Netherlands

Personalised recommendations