Arginine Vasotocin as a Pineal Hormone

  • S. Pavel
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 13)


The pineal nonapeptide hormone arginine vasotocin (AVT) is synthesized by the ependymal cells of the pineal recess and subcommissural organ and stored in so far undefined cells of the pineal gland proper. AVT is first released into the cerebrospinal fluid (CSF) and reaches the blood only secondarily after its absorption from CSF. It displays a diurnal rhythm in the pineal and CSF, suggesting its release into the CSF during the night in the dark. Melatonin represents its releasing hormone. AVT exerts both its endocrine and non-endocrine effects by a unique mechanism involving the activation of serotonin neurotransmission in the brain with resultant inhibition of release of hypothalamic releasing and inhibiting hormones and induction of sleep. It produces both its endocrine effects and sleep at concentrations equivalent to only several hundreds of molecules, being thus by far the most active hormone so far known. Midbrain raphe nuclei or some structures intimately correlated with these cell bodies, most likely contain the extremely sensitive and specific AVT receptors in the mammalian brain. In contrast with its natural analogues arginine Vasopressin and Oxytocin which are mainly blood hormones, AVT is a CSF hormone whose major if not the sole site of action is the brain itself.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Acher, R., Morel, F., Maetz, J.: Présence d’une vasotocine dans la neuro-hypophyse de la grenouille (Rana esculenta L). Biochim. Biophys. Acta 42, 379–380 (1960).CrossRefPubMedGoogle Scholar
  2. Anderson, E.: The anatomy of bovine and ovine pineals. Light and electron microscopic studies. J. Ultrastruct. Res. 8, 5–76 (1965).Google Scholar
  3. Boisonnas, R. A., Huguenin, L.: Synthèse de la Lys8-oxytocine (lysine-vasotocine) et nouvelle synthèse de la lysine-vasopressine. Helv. Chim. Acta 43, 182–190 (1960).CrossRefGoogle Scholar
  4. Bowie, E. P., Herbert, D. C.: Immunocytochemical evidence for the presence of arginine vasotocin in the rat pineal gland. Nature 261, 66 (1976).CrossRefPubMedGoogle Scholar
  5. Galb, M., Goldstein, R., Pavel, S.: Diurnal rhythm of vasotocin in the pineal of the male rat. Acta Endocr. (Kbh.) 84, 523–526 (1977).Google Scholar
  6. Cheesman, D. W.: Structural elucidation of a gonadotropin-inhibiting substance from the bovine pineal gland. Biochim. Biophys. Acta 207, 247–253 (1970).CrossRefPubMedGoogle Scholar
  7. Coculescu, M., Pavel, S.: Arginine vasotocin-like activity of cerebrospinal fluid in diabetes insipidus. J. Clin. Endocrinol. Metab. 36, 1031–1032 (1973).CrossRefPubMedGoogle Scholar
  8. Coculescu, M., Matulevicius, V., Goldstein, R., Pavel, S.: Presence and synthesis of vasotocin in the pineal gland of Brattleboro rats. J. Endocr. (in press).Google Scholar
  9. Demoulin, A., Hudson, B., Francbimont, P., Le gros, J. J.: Arginine-vasotocin does not affect gonadotrophin secretion in vitro. J. Endocr. 72, 105 to 106 (1977).CrossRefPubMedGoogle Scholar
  10. Ebels, I., Versteeg, D. H. G., Vliegenthart, J. F. G.: An attempt to isolate arginine vasotocin from sheep and bovine pineal body. Koninkl. Nederl. Akad. Weten-Amsterdam, Proc. Ser. B. 68, 1–9 (1965).Google Scholar
  11. Fuxe, K.: Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol. Scand. 64, 41–85 (1965).CrossRefGoogle Scholar
  12. Ginsburgy M.: Production, release, transportation and elimination of the neurohypophysial hormones. In: Neurohypophysial Hormones and Similar Polypeptides (Berde, B., ed.), pp. 286–371. Berlin-Heidelberg-New York: Springer. 1968.CrossRefGoogle Scholar
  13. Goldstein, R., Pavel, S.: Vasotocin release into the cerebrospinal fluid of cats induced by luteinizing hormone releasing hormone, thyrotrophin releasing hormone and growth hormone release-inhibiting hormone. J. Endocr. 75, 175–176 (1977).CrossRefPubMedGoogle Scholar
  14. Jouvet, M.: Biogenic amines and the states of sleep. Science 163, 32–41 (1969).CrossRefPubMedGoogle Scholar
  15. Katsoyannis, P. G., Du Vigneaud, V.: Arginine-vasotocin, a synthetic analogue of the posterior pituitary hormones containing the ring of Oxytocin and the side chain of Vasopressin. J. Biol. Chem. 233, 1352 to 1354 (1958).PubMedGoogle Scholar
  16. Koe, B. K., Weissman, A.: p-Chlorophenylalanine: a specific depletor of brain serotonin. J. Pharmacol. Exp. Ther. 154, 499–516 (1966).PubMedGoogle Scholar
  17. Legros, J. J., Louis, F., Gröschel-Stewart, V., Franchimont, P.: Presence of immunoreactive neurophysin-like material in human target organs and pineal gland: physiological meaning. Ann. N.Y. Acad. Sci. 248, 157 to 171 (1975).CrossRefPubMedGoogle Scholar
  18. Legros, J. J., Louis, F., Demoulin, A., Franchimont, P.: Immunoreactive neurophysins and vasotocin in human foetal pineal glands. J. Endocr. 69, 289–290 (1976).CrossRefPubMedGoogle Scholar
  19. Milhorat, T. H.: Formation and flow of the cerebrospinal fluid. In: Brain-Endocrine Interaction II (Knigge, K. M., Scott, D. E., Kobayashi, H., Ishii, S., eds.), pp. 270–281. Basel: Karger. 1975.Google Scholar
  20. Moszkowska, A., Ebels, I.: A study of the antigonadotropic action of synthetic arginine vasotocin. Experientia 24, 610–612 (1968).CrossRefPubMedGoogle Scholar
  21. Olsson, R.: Subcommissural ependyma and pineal organ development in human fetuses. Gen. Comp. Endocrinol. 1, 117–123 (1961).CrossRefPubMedGoogle Scholar
  22. Owman, Ch.: Secretory activity of the fetal pineal gland of the rat. Acta Morphol. Neerl. Scand. 3, 367–394 (1961).PubMedGoogle Scholar
  23. Palkovits, M., Inke, G., Lukács, G.: Topographische Beziehungen des menschlichen Subcommissuralorgans zur Epiphyse und ihre funktionelle Bedeutung. Endokrinologie 42, 194–200 (1962).PubMedGoogle Scholar
  24. Palkovits, M.: Morphology and Function of the Subcommissural Organ, p. 41. Budapest: Akadémiai Kiadó. 1965.Google Scholar
  25. Pavel, S., Milcu, M., Neacsu, C.: Biological and Chromatographie characterization of a Polypeptide with pressor and oxytocic activities isolated from bovine pineal gland. Endocrinology 72, 563–566 (1963).CrossRefGoogle Scholar
  26. Pavel, S.: Evidence for the presence of lysine vasotocin in the pig pineal gland. Endocrinology 77, 812–817 (1965).CrossRefPubMedGoogle Scholar
  27. Pavel, S., Petrescu, S.: Inhibition of gonadotrophin by a highly purified pineal peptide and by synthetic arginine vasotocin. Nature 212, 1054 (1966).CrossRefPubMedGoogle Scholar
  28. Pavel, S.: Endocrine functions of arginine vasotocin from mammalian pineal gland. Gen. Comp. Endocrinol. 9, 481 (1967).Google Scholar
  29. Pavel, S.: Effects of pineal and synthetic arginine vasotocin on the gonads of prepuberal male mice. In: Fifth Conf. Europ. Comparative Endo-crinologists, p. 129. Utrecht: State University. 1969.Google Scholar
  30. Pavel, S.: Tentative identification of arginine vasotocin in human cerebro-spinal fluid. J. Clin. Endocrinol. Metab. 31, 369–371 (1970).CrossRefGoogle Scholar
  31. Pavel, S.: Evidence for the ependymal origin of arginine vasotocin in the bovine pineal gland. Endocrinology 89, 613–614 (1971).CrossRefPubMedGoogle Scholar
  32. Pavel, S.: Evidence for the identity of the pineal natriuretic principle and arginine vasotocin. Rev. Roum. Endocrinol. 9, 295–298 (1972).Google Scholar
  33. Pavel, S., Coculescu, M.: Arginine vasotocin-like activity of cerebrospinal fluid induced by injection of hypertonic saline into the third cerebral ventricle of cats. Endocrinology 91, 825–827 (1972).CrossRefGoogle Scholar
  34. Pavel, S.: Arginine vasotocin release into cerebrospinal fluid of cats induced by melatonin. Nature 154, 183–184 (1973).Google Scholar
  35. Pavel, S., Dorcescu, M., Petrescu-Holban, R., Ghinea, E.: Biosynthesis of a vasotocin-like peptide in cell cultures from pineal glands of human fetuses. Science 181, 1252–1253 (1973 a).CrossRefPubMedGoogle Scholar
  36. Pavel, S., Matrescu, L., Petrescu, M.: Central corticotropin inhibition by arginine vasotocin in the mouse. Neuroendocrinology 12, 371–375 (1973 b).CrossRefPubMedGoogle Scholar
  37. Pavel, S., Petrescu, M., Vicoleanu, N.: Evidence of central gonadotropin inhibiting activity of arginine vasotocin in the female mouse. Neuroendocrinology 11, 370–374 (1973 c).CrossRefPubMedGoogle Scholar
  38. Pavel, S., Dumitru, I., Klepsh, I., Dorcescu, M.: A gonadotropin inhibiting principle in the pineal of human fetuses. Evidence for its identity with arginine vasotocin. Neuroendocrinology 13, 41–46 (1973/74).CrossRefPubMedGoogle Scholar
  39. Pavel, S.: Ependymal origin of arginine vasotocin. In: Neurosecretion—The Final Neuroendocrine Pathway (Knowles, F., Vollrath, L., eds.), p. 316. Berlin-Heidelberg-New York: Springer. 1974.Google Scholar
  40. Pavel, S.: Vasotocin biosynthesis by neurohypophysial cells from human fetuses. Evidence for its ependymal origin. Neuroendocrinology 19, 150–159 (1975).Google Scholar
  41. Pavel, S.: Opposite effects of vasotocin injected intrapituitarly and intra-ventricularly on corticotropin release in mice. Experientia 31, 1469 to 1470 (1975 a).CrossRefPubMedGoogle Scholar
  42. Pavel, S., Calb, M., Georgescu, M.: Reversal of the effects of pinealectomy on the pituitary prolactin content in mice by very low concentrations of vasotocin injected into the third cerebral ventricle. J. Endocr. 66, 289 to 290 (1975).CrossRefPubMedGoogle Scholar
  43. Pavel, S., Gheorghiu, C., Calb, M., Petrescu, M.: Reversal by vasotocin of pinealectomy and constant light effects on the pituitary melanocyte-stimulating hormone (MSH) content in the mouse. Endocrinology 97, 674–676 (1975 a).CrossRefPubMedGoogle Scholar
  44. Pavel, S., Goldstein, R., Calb, M.: Vasotocin content in the pineal gland of foetal, newborn and adult male rats. J. Endocr. 66, 283–284 (1975 b).CrossRefPubMedGoogle Scholar
  45. Pavel, S., Cristoveanu, A., Goldstein, R., Calb, M.: Inhibition of release of corticotropin releasing hormone in cats by extremely small amounts of vasotocin injected into the third ventricle of the brain. Evidence for the involvement of 5-hydroxytryptamine containing neurons. Endocrinology 101, 672–678 (1977).Google Scholar
  46. Pavel, S., Goldstein, R., Gheorghiu, C., Calb, M.: Pineal vasotocin: release into cat cerebrospinal fluid by melanocyte-stimulating hormone release-inhibiting factor. Science 197, 179–180 (1977 a).CrossRefPubMedGoogle Scholar
  47. Pavel, S., Psatta, D., Goldstein, R.: Slow-wave sleep induced in cats by extremely small amounts of synthetic and pineal vasotocin injected into the third ventricle of the brain. Brain Res. Bull. 2, 251–254 (1977 b).CrossRefPubMedGoogle Scholar
  48. Pavel, S., Goldstein, R., Ghinea, E., Calb, M.: Chromatographic evidence for vasotocin biosynthesis by cultured pineal ependymal cells from rat fetuses. Endocrinology 100, 205–208 (1977 c).CrossRefPubMedGoogle Scholar
  49. Pavel, S., Ghinea, E., Goldstein, R., Matulevicius, V.: Vasotocin biosynthesis by cultured pineal glands from adult male rats. J. Endocr. (in press, 1978).Google Scholar
  50. Pavel, S., Goldstein, R.: Pineal vasotocin: further evidence that melatonin represents its releasing hormone. J. Endocr. (in press, 1978).Google Scholar
  51. Pavel, S., Luca, N., Calb, M., Goldstein, R.: Inhibition of release of luteinizing hormone in the male rat by arginine vasotocin. Further evidence for the involvement of 5-hydroxytryptamine containing neurons in the mechanism of action of arginine vasotocin. Endocrinology (in press, 1978 a).Google Scholar
  52. Perks, A. M., Viszolyi, E.: Studies of the neurohypophysis in foetal mammals. In: Foetal and Neonatal Physiology (Comline, K. S., Cross, K. W., Daves, G.S., Nathanielz, P. W., eds.), pp. 430–438. Cambridge: Cambridge University Press. 197Google Scholar
  53. Pickering, B. T., Heller, H.: Chromatographic and biological characteristics of fish and frog neurohypophysial extracts. Nature 184, 1463–1464 (1959).CrossRefPubMedGoogle Scholar
  54. Quay, W. B.: Pineal Chemistry, p. 303. Springfield: C. C Thomas. 1974.Google Scholar
  55. Reinharz, A. C., Czernichow, P., Vallotton, B.: Neurophysin-like protein in bovine pineal gland. J. Endocr. 62, 35–44 (1974).CrossRefPubMedGoogle Scholar
  56. Reinharz, A. C., Czernichow, P., Vallotton, B.: Neurophysins I and II from the bovine posterior pituitary lobe and neurophysin-like proteins from bovine pineal gland. Ann. N.Y. Acad. Sci. 248, 172–183 (1975).CrossRefPubMedGoogle Scholar
  57. Reinharz, A. C., Vallotton, B.: Presence of two neurophysins in the human pineal gland. Endocrinology 100, 994–1001 (1977).CrossRefPubMedGoogle Scholar
  58. Reinharz, A. C., Pavel, S., Vallotton, B.: Evidence for the in vitro release of neurophysin by the rat pineal gland. Experientia (in press, 1978).Google Scholar
  59. Reiter, R. J., Vaughan, M. K., Vaughan, G. M., Sorrentino, S., Donofrio, R. J.: The pineal gland as an organ of internal secretion. In: Frontiers of Pineal Physiology (Altschule, M. D., ed.), p. 96. Cambridge: MIT Press. 1975.Google Scholar
  60. Relkin, R.: The Pineal, p. 34. Montreal: Eden Press. 1976.Google Scholar
  61. Romeis, B.: Die Hypophyse. In: Handbuch der mikroskopischen Anatomie des Menschen (v. Möllendorff, W., ed.), pp. 25–37. Berlin: Springer. 1940.Google Scholar
  62. Rosenbloom, A. A., Fisher, D. A.: Radioimmunoassay of arginine vasotocin: studies of bovine pineal. Proc. 56th Ann. Meet. Endocr. Soc. Oklahoma City, p. A-296. 1974.Google Scholar
  63. Rosenbloom, A. A., Fisher, D. A.: Arginine vasotocin in the rabbit sub-commissural organ. Endocrinology 96, 1038–1039 (1975).CrossRefPubMedGoogle Scholar
  64. Rosenbloom, A. A., Fisher, D. A.: Radioimmunoassayable AVT and AVP in adult mammalian brain tissue: comparison of normal and Brattleboro rats. Neuroendocrinology 17, 354–361 (1975 a).CrossRefPubMedGoogle Scholar
  65. Sachs, H., Fawcett, P., Takabatake, Y., Portauova, R.: Biosynthesis and release of Vasopressin and neurophysin. Rec. Progr. Horm. Res. 25, 447–491 (1969).PubMedGoogle Scholar
  66. Sawyer, W. H., Munsick, R. A., Van Dyke, H. B.: Pharmacological evidence for the presence of arginine vasotocin and Oxytocin in neurohypophysial extracts from cold-blooded vertebrates. Nature 184, 1464–1465 (1959).CrossRefPubMedGoogle Scholar
  67. Sawyer, W. H.: Phylogenetic aspects of neurohypophysial hormones. In: Neurohypophysial Hormones and Similar Polypeptides (Berde, B., ed.), pp. 717–747. Berlin-Heidelberg-New York: Springer. 1968.CrossRefGoogle Scholar
  68. Skowsky, W. R., Fisher, D. A.: Immunoreactive arginine Vasopressin and arginine vasotocin in the fetal pituitary of man and sheep. Clin. Res. 21, 205–207 (1973).Google Scholar
  69. Smith, M. L., Orts, R. J., Benson, B.: Effects of non-melatonin pineal factors in the PMS-stimulated immature rat. Anat. Rec. 172, 408 (1972).Google Scholar
  70. Vander, A. J.: Inhibition of renin release in the dog by Vasopressin and vasotocin. Circulat. Res. 23, 605–609 (1968).CrossRefPubMedGoogle Scholar
  71. Vaugban, M. K., Vaughan, G. M., Klein, D. C.: Arginine vasotocin: effects on development of reproductive organs. Science 186, 938–939 (1974).CrossRefGoogle Scholar
  72. Vaughan, M. K., Reiter, R. J., McKinney, T., Vaughan, G. M.: Inhibition of growth of gonadal dependent structures by arginine vasotocin and purified bovine pineal fractions in immature mice and hamsters. Int. J. Fertil. 19, 103–106 (1974 a).PubMedGoogle Scholar
  73. Vaughan, M. K., Vaughan, G. M., Reiter, R. J.: Inhibition of HCG-induced ovarian and uterine growth in the mouse by synthetic arginine vasotocin. Experientia 31, 862–863 (1975).CrossRefPubMedGoogle Scholar
  74. Vaughan, M. K., Blask, D. E., Johnson, L. Y., Reiter, R. J.: Prolactin-releasing avticity of arginine vasotocin in vitro. Hormone Res. 6, 342–350 (1975 a).CrossRefPubMedGoogle Scholar
  75. Vaughan, M. K., Vaughan, G. M., Blask, D. E., Barnett, M. P., Reiter, R. J.: Arginine vasotocin: structure-activity relationships and influence on gonadal growth and function. Amer. Zool. 16, 25–29 (1976).Google Scholar
  76. Vaughan, M. K., Vaughan, G. M., Reiter, R. J.: Inhibition of human chorionic gonadotrophin-induced hypertrophy of the ovaries and uterus in immature mice by some pineal indoles, 6-hydroxymelatonin and arginine vasotocin. J. Endocr. 68, 397–400 (1976 a).CrossRefPubMedGoogle Scholar
  77. Vaughan, M. K., Blask, D. E., Vaughan, G. M., Reiter, R. J.: Dose-dependent prolactin releasing activity of arginine vasotocin in intact and pinealectomized estrogen-progesterone treated adult male rats. Endocrinology 99, 1319–1322 (1976 b).CrossRefPubMedGoogle Scholar
  78. Du Vigneaud, V.: Hormones of the mammalian pituitary gland and their naturally occurring analogues. Johns Hopkins Med. J. 124, 53–65 (1969).PubMedGoogle Scholar
  79. Viszolyi, E., Perks, A. M.: New neurohypophysial principle in foetal mammals. Nature 23, 1169–1171 (1969).CrossRefGoogle Scholar
  80. Wildi, E., Frauchiger, E.: Modifications histologiques de l’épiphyse humaine pendant l’enfance, l’age adult et le vieillissement. In: Structure and Function of the Epiphysis Cerebri (Kappers, J. A., Schade, J. P., eds.), pp. 218–233. Amsterdam: Elsevier. 1965.CrossRefGoogle Scholar
  81. Van Wimersma Greidanus, Tj. B., Woutersen, R. A., de Wied, D.: Stimulation and inhibition of corticotrophin release in rats after intracerebro-ventricular administration of Vasopressin analogues. J. Endocr. 72, 10P–11P (1977).Google Scholar

Copyright information

© Springer-Verlag Wien 1978

Authors and Affiliations

  • S. Pavel
    • 1
  1. 1.Institute of EndocrinologyBucharestRumania

Personalised recommendations