Advertisement

Evidence for the Existence of Receptor—Receptor Interactions in the Central Nervous System. Studies on the Regulation of Monoamine Receptors by Neuropeptides

  • K. Fuxe
  • L. F. Agnati
  • F. Benfenati
  • M. Celani
  • I. Zini
  • M. Zoli
  • V. Mutt
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 18)

Summary

Substance P (SP) (10−8 M) can rapidly reduce the affinity and increase the density of 3H-5-HT binding sites in spinal cord membranes.

CCK-8 and CCK-4 (10−8 M) can rapidly and differentially change the characteristics of 3H-spiperone striatal binding sites linked to DA receptors of the D2 type. CCK-4 increase and CCK-8 reduce the number of striatal binding sites for 3H-spiperone, indicating for the first time separate CCK-4 binding sites.

CCK-4 (10−8 M) but not CCK-8 (10−8 M) can rapidly reduce the affinity and increase the number of the 3H-spiperone binding sites linked to 5-HT receptors of the dorsal cerebral cortex of rats. CCK-8 (10−8 M) only produces a trend for a small increase in the Bmax values of these receptors. These results again imply the existence of separate CCK-4 binding sites in this case in the cerebral cortex.

Glutamate (10−6 M), but not N-methyl-D-aspartate (10−6 M) can rapidly change the characteristics of the 3H-N-propylnorapomorphine (3H-NPA) binding sites in striatal membranes of rats. Glutamate (10−6 M) increases the density and especially reduces the affinity of the 3H-NPA binding sites, which label D2 and D3 types of DA receptors.

Taken together the present findings give evidence that neuropeptide receptors and glutamate receptors can in vitro rapidly modulate the characteristics of different types of DA and 5-HT receptors by way of receptor—receptor interactions at the comodulate level or at the local circuit level. It is hypothesized that these receptor—receptor interactions are of importance for the encoding of short-term memory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati, L. F., Fuxe, K., Benfenati, F., Calza, L., Battistini, N., Ögren, S.-O.: Receptor—receptor interactions: Possible new mechanisms for the action of some antidepressant drugs. For: Frontiers in Neuropsychiatric Research, CINP, Satellite symposium, Corfu, Greece, June 28–30. New York: Macmillan. 1982a.Google Scholar
  2. Agnati, L. F., Fuxe, K., Benfenati, F., Zini, I., Hökfelt, T.: On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of 3H-5-HT binding sites. Acta Physiol. Scand. (in press, 1982b).Google Scholar
  3. Agnati, L. F., Fuxe, K., Ferri, M., Benfenati, F., Ögren, S.-O.: A new hypothesis on memory. A possible role of local circuits in the formation of the memory trace. Med. Biol. 59, 224–229 (1981).PubMedGoogle Scholar
  4. Agnati, L. F., Fuxe, K., Zini, I., Lenzi, P., Hökfelt, T.: Aspects on receptor regulation and isoreceptor identification. Med. Biol. 58, 182–187 (1980).PubMedGoogle Scholar
  5. Agnati, L. F., Fuxe, K., Zoli, M., Rondanin, C., Ögren, S.-O.: New vistas on synaptic plasticity: The receptor mosaic hypothesis of the engram. Med. Biol. 60, 183–190 (1982).PubMedGoogle Scholar
  6. Bennett, J. P., Snyder, S. H.: Serotonin and lysergic acid diethylamide binding in rat brain membranes: Relationship to postsynaptic serotonin receptors. Mol. Pharmacol. 12, 373–389 (1976).PubMedGoogle Scholar
  7. Bloom, F. E.: The role of cyclic nucleotide in central synaptic function. Rev. Physiol. Biochem. Pharmacol. 74, 1–103 (1975).CrossRefPubMedGoogle Scholar
  8. Creese, I., Schneider, R., Snyder, S. H.: 3H-spiroperidol labels dopamine recep- tors in pituitary and brain. Eur. J. Pharmacol. 46, 377–382 (1977).CrossRefPubMedGoogle Scholar
  9. Frey, P.: Cholecystokinin in rat brain. Determination by HPLC/RIA. Brain Res. (in press, 1982).Google Scholar
  10. Fuxe, K., Agnati, L. F., Köhler, C., Kuonen, D., Ögren, S.-O., Andersson, K., Hökfelt, T.: Characterization of normal and supersensitive dopamine receptors: Effects of ergot drugs and neuropeptides. J. Neural Transm. 51, 3–37 (1981).CrossRefPubMedGoogle Scholar
  11. Fuxe, K., Agnati, L. F., Benfenati, F., Cimino, M., Algeri, S., Hökfelt, T., Mutt, V.: Modulation by cholecystokinins of 3H-spiroperidol binding in rat striatum: Evidence for increased affinity and reduction of the number of binding sites. Acta Physiol. Scand. 113, 567–569 (1981).Google Scholar
  12. Fuxe, K., Andersson, K., Schwarcz, R., A gnati, L. F., Pérez de la Mora, P., Hökfelt, T., Goldstein, M., Ferland, L., Possani, L., Tapia, R.: Studies on different types of dopamine nerve terminals in the forebrain and their possible interactions with hormones and with neurons containing GABA, glutamate and opioid peptides. In: Advances in Neurology, Vol. 24, pp. 199–214. New York: Raven Press. 1979.Google Scholar
  13. Fuxe, K., Fredholm, B., Agnati, L. F., Ögren, S.-0., Everitt, B.J., Jonsson, G., Gustafsson, J.-A.: Interaction of ergot drugs with central monoamine systems. Evidence for a high potential in the treatment of mental and neurological disorders. Pharmacol. 16, 99–134 (1978).Google Scholar
  14. Fuxe, K., Hökfelt, T., Olson, L., Ungerstedt, U.: Central monoaminergic pathways with emphasis on their regulation of the so-called “extrapyramidal motor system”. Pharmac. Ther. 3, 169–210 (1977).Google Scholar
  15. Fuxe, K., Ögren, S.-O., Agnati, L. F., Benfenati, F., Cavicchioli, L., Fredholm, B., Andersson, K., Farabegoli, C., Eneroth, P.: Regional variations in 5-HT receptor populations and in 3H-imipramine binding sites in their responses to chronic antidepressant treatment. For: Frontiers in Neuropsychiatric Research, CINP, Satellite symposium, Corfu, Greece, June 28–30. New York: Macmillan. 1982.Google Scholar
  16. Hökfelt, T., Rehfeld, J. F., Skirboll, L., Ivemark, B., Goldstein, M., Markey, K.: Evidence for coexistence of dopamine and CCK in mesolimbic neurons. Nature 285, 476–478 (1980).CrossRefPubMedGoogle Scholar
  17. Innis, R.B., Snyder, S.: Distinct cholecystokinin receptors in brain and pancreas. Proc. Natl. Acad. Sci. U.S.A. 77, 6917–6921 (1980).CrossRefPubMedCentralPubMedGoogle Scholar
  18. Köhler, C., Fuxe, K., Ögren, S.-0., Agnati, L. F.: Evidence for in vivo binding of apomorphine and bromocriptine to receptor sites not labelled by 3H-spiperone. Eur. J. Pharmacol. 58, 339–340 (1979).CrossRefPubMedGoogle Scholar
  19. Lefkowitz, R.J.: Radioligand binding studies of adrenergic receptors. In: Central Adrenaline Neurons. Basic Aspects and Their Role in Cardiovascular Functions, pp. 291–301. Oxford: Pergamon Press. 1979.Google Scholar
  20. Leysen, J. E.: 3H-apomorphine receptors in various rat brain regions: a study of specific and nonspecific binding and the influence of chronic neuroleptic treatment. In: Long Term Effects of Neuroleptics (Adv. Biochem. Psychopharmacol., Vol. 24), p. 123. New York: Raven Press. 1980.Google Scholar
  21. Nelson, D. L., Herber A., Bourgoin, S., Glowinski,J., Hanon, M.: Characteristics of central 5-HT receptors and their adaptive changes following intracerebral 5,7-dihydroxytryptamine administration in the rat. Molec. Pharmacol. 14, 983–996 (1978).Google Scholar
  22. Peroutka, S.J., Snyder, S. H.: Multiple serotonin receptors. Differential binding of 3H-5-hydroxytryptamine, 3H-lysergic acid diethylamide and 3H-spiroperidol. Mol. Pharmacol. 16, 687–699 (1979).PubMedGoogle Scholar
  23. Rehfeld, J. F.: Immunochemical studies of cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and dog. J. Biol. Chem. 253, 4022–4030 (1978).PubMedGoogle Scholar
  24. Seeman, P.: Dopamine Receptors. In: Pharmacological Reviews, Vol. 32, No.3, pp. 229–313. Baltimore: Williams and Wilkins. 1980.Google Scholar
  25. Seeman, P., List, S.: Dopamine receptors and dopaminergic supersensitivity. In: Advances in Pharmacology and Therapeutics II (Neurotransmitters Receptors, Vol.2), p. 42. New York: Pergamon Press. 1981.Google Scholar
  26. Seyfried, C. A., Fuxe, K., Wolf, H.-P., Agnati, L. F.: Demonstration of a new type of dopamine receptor agonist: an indolyl-3-butylamine. Actions at intact versus supersensitive dopamine receptors in the rat forebrain. Acta Physiol. Scand. (in press, 1982).Google Scholar
  27. Vanderhaeghen, J.J., Lotstra, F., DeMey, J., Gilles, C.: Immunohistochemical localization of cholecystokinin- and gastrin-like peptides in the brain and hypophysis of the rat. Proc. Nat. Acad. Sci. U.S.A. 77, 1190–1194 (1980).CrossRefGoogle Scholar
  28. Vigouret, J M., Burki, H.R., Jaton, A.L., Zuger, P.E., Loew, D.M.: Neurochemical and neuropharmacological investigations with four ergot derivatives: Bromocriptine, dhydroergotoxine, CF 25–397 and CM 29–712. Pharmacol. 16, 156–173 (1978).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • K. Fuxe
    • 2
    • 3
  • L. F. Agnati
    • 1
    • 3
  • F. Benfenati
    • 1
    • 3
  • M. Celani
    • 1
    • 3
  • I. Zini
    • 1
    • 3
  • M. Zoli
    • 1
    • 3
  • V. Mutt
    • 1
    • 3
  1. 1.Department of HistologyKarolinska InstitutetStockholmSweden
  2. 2.Department of HistologyKarolinska InstitutetStockholmSweden
  3. 3.Departments of Human Physiology and EndocrinologyUniversity of ModenaModenaItaly

Personalised recommendations