Advertisement

Regulation of Noradrenergic Receptor Systems in Brain that Are Coupled to Adenylate Cyclase

  • F. Sulser
  • D. H. Manier
  • A. J. Janowsky
  • F. Okada
Conference paper
Part of the Journal of Neural Transmission book series (NEURAL SUPPL, volume 18)

Summary

The current status of regulation of norepinephrine (NE) receptor systems in brain that are coupled to adenylate cyclase is briefly reviewed. The availability of NE and the formation of the NE receptor complex is one prerequisite for the regulation of both the sensitivity of the system and the density of its β-adrenoceptor population. Serotonergic neuronal input is corequired with NE for the down-regulation of the number of β-adrenoceptors, which in the absence of serotonergic input, show a marked decrease in agonist affinity. Steroid hormones influence either the sensitivity of the NE receptor system (adrenocorticoids) or the biological responsiveness and the density of β-adrenoceptors (sex steroids) while preliminary data indicate that 3,5,3′-triiodothyronine can convert a “DMI resistant” to a “DMI responsive” receptor system. The complex neurohormonal and endocrine regulation of the biological responsiveness of NE receptor systems, the number of receptors and the efficacy of their coupling to adenylate cyclase appear to represent control mechanisms for the intensity of signal transfer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brunello, N., Chuang, D. M., Costa, E.: Use of specific brain lesions to study the site of action of antidepressants. In: New Vistas in Depression ( Langer, S., Briley, B., eds.). New York: Pergamon Press. 1982.Google Scholar
  2. Cohen, P.: The role of protein phosphorylation in neuronal and hormonal control of cellular activity. Nature 296, 613–620 (1982).CrossRefPubMedGoogle Scholar
  3. De Lean, A., Stadel, J. M., Lefkowitz, R.J.: A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase coupled ß-adrenergic receptors. J. Biol. Chem. 255, 7108–7117 (1980).Google Scholar
  4. Exton, J. H.: Molecular mechanisms involved in a-adrenergic responses. Trends Pharmacol. Sci. 3, 111–115 (1982).Google Scholar
  5. Goodwin, F., Prange, A.J., Post, R. M., Muscettola, G., Lipton, M.A.: L-triiodothyronine converts tricyclic antidepressant non-responders to responders. Am. J. Psychiat. 139, 34–38 (1982).CrossRefPubMedGoogle Scholar
  6. Greengard, P.: Cyclic mucleotides, phosphorylated proteins, and neuronal function. New York: Raven Press. 1978.Google Scholar
  7. Hirata, F., Axelrod,J.: Enzymatic methylation of phosphatidylethanolamine increases erythrocyte membrane fluidity. Nature 275, 219–220 (1978).CrossRefPubMedGoogle Scholar
  8. Janowsky, A.J., Okada, F., Manier, D.H., Steranka, L., Sulser, F.: Role of serotonergic input in the regulation of the ß-adrenergic receptor-coupled adenylate cyclase system. Science 218, 900–902 (1982).CrossRefPubMedGoogle Scholar
  9. Janowsky, A.J., Steranka, L. R., Gillespie, D. D., Sulser, F.: Role of neuronal signal input in the down-regulation of central noradrenergic receptor function by antidepressant drugs. J. Neurochem. 39, 290–292 (1982 a).Google Scholar
  10. Levin, B. E.: Presynaptic location and axonal transport of ßl-adrenoreceptors in the rat brain. Science 217, 555–557 (1982).CrossRefPubMedGoogle Scholar
  11. Limbird, L. E.: Activation and attenuation of adenylate cyclase. The role of GTP binding proteins as macromolecular messengers. Biochem. J. 195, 1–13 (1981).PubMedCentralPubMedGoogle Scholar
  12. Manier, D. H., Okada, F., Janowsky, A.J., Steranka, L. R., Sulser, F.: Serotonergic denervation changes binding characteristics of beta adrenoceptors in rat cortex. Brain Res. (in press, 1982).Google Scholar
  13. Minneman, K. P., Dibner, M.D., Wolfe, B.B., Molinoff, P.B.: ßl- and ß2-adrenergic receptors in rat cerebral cortex are independently regulated. Science 204, 866–868 (1979).CrossRefPubMedGoogle Scholar
  14. Minneman, K. P., Pittman, R.N., Yeh, H. H., Woodward, D.J., Wolfe, B. B., Moline,P.B.: Selective survival of ßl-adrenergic receptors in rat cerebellum following neonatal X = irradiation. Brain Res. 209, 25–34 (1981).CrossRefPubMedGoogle Scholar
  15. Mishra, R., Sulser, F.: The cyclic AMP response to norepinephrine in the limbic forebrain of male and female rats: Effect of desipramine. Biochem. Pharmacol. 30, 3126–3128 (1981).CrossRefPubMedGoogle Scholar
  16. Mobley, P. L., Manier, D. H., Sulser, F.: Adrenal corticoids regulate the norepinephrine sensitive adenylate cyclase system in brain. J. Pharma-col. Exp. Ther. (in press, 1982).Google Scholar
  17. Mobley, P.L., Sulser, F.: Norepinephrine stimulated cyclic AMP accumulation in rat limbic forebrain slices: partial mediation by a subpopulation of receptors with neither alpha nor beta characteristics. Europ. J. Pharmacol. 60, 221–227 (1979).CrossRefGoogle Scholar
  18. Mobley, P. L., Sulser, F.: Adrenal corticoids regulate sensitivity of noradrenaline receptor coupled adenylate cyclase in brain. Nature 286, 608–609 (1980).CrossRefPubMedGoogle Scholar
  19. Nahorski, S. P.: Identification and significance of beta-adrenoceptor subtypes. Trends Pharmacol. Sci. 2, 95–98 (1981).Google Scholar
  20. Okada, F., Manier, D. H., Janowsky, A.J., Steranka, L. R., Sulser, F.: Role of aminergic neuronal input in the down-regulation by desipramine (DMI) of the norepinephrine (NE) receptor coupled adenylate cyclase system in rat cortex. Soc. Neurosci. 8 (in press, 1982).Google Scholar
  21. Pastan, L H., Willingham, M. C.: Journey to the center of the cell: Role of the receptosome. Science 214, 504–509 (1981).CrossRefPubMedGoogle Scholar
  22. Robinson, S. E., Mobley, P. L., Smith, H. E., Sulser, F.: Structural and steric requirements of ß-phenethylamines as agonists of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. NaunynSchmiedeberg’s Arch. Pharmacol. 303, 175–180 (1978).Google Scholar
  23. Rodbell, M.: The role of hormone receptors and GTP regulatory proteins in membrane transduction. Nature 284, 17–22 (1980).CrossRefPubMedGoogle Scholar
  24. Rodbell, M., Birnbaumer, L., Pohl, S. L., Krans, M. M.: The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. J. Biol. Chem. 246, 1872–1882 (1971).PubMedGoogle Scholar
  25. Ross, E.M., Gilman, A. G.: Biochemical properties of hormone-sensitive adenylate cyclase. Ann. Rev. Biochem. 49, 533–564 (1980).CrossRefPubMedGoogle Scholar
  26. Sar, M., Stumpf W. E.: Central noradrenergic neurons concentrate 3H-oestradiol. Nature 289, 501–502 (1981).CrossRefGoogle Scholar
  27. Schanche, J. S., Ogreid, D., Doskeland, S. O., Refiner, M., Sand, T. E., Keland, P. M., Christofferson, T: Evidence agonist a requirement for phospholipid methylation in adenylate cyclase activation by hormones. Fed. Europ. Biochem. Soc. 138, 167–172 (1982).CrossRefGoogle Scholar
  28. Strittmacher, W.J., Hirata, F., Axelrod,J.: Phospholipid methylation unmasks cryptic ß-adrenergic receptors in rat reticulocytes. Science 204, 1205–1207 (1979).CrossRefGoogle Scholar
  29. Sulser, F.: New perspectives on the mode of action of antidepressant drugs. Trends Pharmacol. Sci. 1, 92–94 (1979).Google Scholar
  30. Sulser, F., Mishra, R.: Regulation of central noradrenergic receptor function and its relevance to the therapy of depression. In: New Vistas in Depression ( Langer, S., Briley, B., eds.). New York: Pergamon Press. 1982.Google Scholar
  31. Sulser, F., Mobley, P. L.: Regulation of central noradrenergic receptor function. In: New Vistas on the Mode of Action of Antidepressant Treatments. In: Neuroreceptors: Basic and clinical aspects ( Usdin, E., Davis, J. M., Bunney, W. E., eds.). London: Wiley. 1982.Google Scholar
  32. Wagner, D.A., Davies, J. N.: Decreased ß-adrenergic responses in the female rat brain are eliminated by ovariectomy: correlation of [3H]-dihydroalprenolol binding and catecholamine stimulated cyclic AMP levels. Brain Res. 201, 235–239 (1980).CrossRefPubMedGoogle Scholar
  33. Walsh, D.A., Ashby, C. S.: Protein kinase: Aspects of their regulation and diversity. Recent Prog. Horm. Res. 29, 329–359 (1973).Google Scholar
  34. Zimmerman, T. P., Schmitges, C.J., Wolberg, G., Deeprose, R. D., Duncan, G. S., Cuatrecasas, P., Elion, G. B.: Modulation of cyclic AMP metabolism by S-adenosylhomocysteine and S-3-deaza-adenosylhomocysteine in mouse lymphocytes. Proc. Natl. Acad. Sci., U.S.A. 77, 5639–5643 (1980).CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • F. Sulser
    • 1
    • 2
  • D. H. Manier
    • 1
  • A. J. Janowsky
    • 1
  • F. Okada
    • 1
  1. 1.Tennessee Neuropsychiatric InstituteVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of PharmacologyVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations