Advertisement

Epilepsies: Temporal Lobe Epilepsy

  • Serge Weis
  • Michael Sonnberger
  • Andreas Dunzinger
  • Eva Voglmayr
  • Martin Aichholzer
  • Raimund Kleiser
  • Peter Strasser
Chapter
  • 396 Downloads

Abstract

Temporal lobe epilepsy (also called mesial temporal lobe epilepsy), the most frequent form of partial epilepsy in adults, is clinically characterized by alterations in consciousness combined by various functional manifestations including sensory, motor, psychic, and autonomic.

On MR imaging, atrophy and T2-hyperintensity of hippocampus are the most relevant findings.

Significant neuronal loss is noted in the hippocampus; based on the most severly involved cornu ammonis (CA) region, three different types of hippocampal sclerosis are defined by the International League Against Epilepsy (ILAE).

The pathogenesis is not yet fully understood. An initial precipitating injury before the age of 4 years (e.g., complex febrile seizures, birth trauma) might be a contributing factor. Altered inhibitory mechanisms, interneurons, mossy cells, calretinin-immunoreactive neurons with Cajal–Retzius cell morphology, GABA transmission, and astrocytes might further contribute. Genes differently expressed play roles in structural integrity, axonal outgrowth, proliferation, gene-transcription control, calcium homeostasis, neuronal signaling, serotonin receptor (HTR2A), and neuropeptide Y receptor.

Treatment consists in the tailored neurosurgical resection of the sclerotic hippocampus, parts of the amygdala and the temporal cortex. Two-year postoperative seizure control is achieved in 60–80% and depends on the type of hippocampal sclerosis.

Selected References

  1. Alexander A, Maroso M, Soltesz I (2016) Organization and control of epileptic circuits in temporal lobe epilepsy. Prog Brain Res 226:127–154.  https://doi.org/10.1016/bs.pbr.2016.04.007Google Scholar
  2. Alonso Vanegas MA, Lew SM, Morino M, Sarmento SA (2017) Microsurgical techniques in temporal lobe epilepsy. Epilepsia 58(suppl 1):10–18.  https://doi.org/10.1111/epi.13684Google Scholar
  3. Andres-Mach M, Fike JR, Luszczki JJ (2011) Neurogenesis in the epileptic brain: a brief overview from temporal lobe epilepsy. Pharmacol Rep 63(6):1316–1323Google Scholar
  4. Bernhardt BC, Hong S, Bernasconi A, Bernasconi N (2013) Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci 7:624.  https://doi.org/10.3389/fnhum.2013.00624Google Scholar
  5. Blumcke I, Pauli E, Clusmann H, Schramm J, Becker A, Elger C, Merschhemke M, Meencke HJ, Lehmann T, von Deimling A, Scheiwe C, Zentner J, Volk B, Romstock J, Stefan H, Hildebrandt M (2007) A new clinico-pathological classification system for mesial temporal sclerosis. Acta Neuropathol 113(3):235–244.  https://doi.org/10.1007/s00401-006-0187-0Google Scholar
  6. Blumcke I, Aronica E, Urbach H, Alexopoulos A, Gonzalez-Martinez JA (2014) A neuropathology-based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol 128(1):39–54.  https://doi.org/10.1007/s00401-014-1288-9Google Scholar
  7. Bonilha L, Keller SS (2015) Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes. Quant Imaging Med Surg 5(2):204–224.  https://doi.org/10.3978/j.issn.2223-4292.2015.01.01Google Scholar
  8. Burtscher J, Schwarzer C (2017) The opioid system in temporal lobe epilepsy: functional role and therapeutic potential. Front Mol Neurosci 10:245.  https://doi.org/10.3389/fnmol.2017.00245Google Scholar
  9. Bruton CJ (1988) The neuropathology of temporal lobe epilepsy. Oxford University Press, OxfordGoogle Scholar
  10. Caciagli L, Bernasconi A, Wiebe S, Koepp MJ, Bernasconi N, Bernhardt BC (2017) A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy: time is brain? Neurology 89(5):506–516.  https://doi.org/10.1212/wnl.0000000000004176Google Scholar
  11. Camacho DL, Castillo M (2007) MR imaging of temporal lobe epilepsy. Semin Ultrasound CT MR 28(6):424–436Google Scholar
  12. Capizzano AA, Vermathen P, Laxer KD, Matson GB, Maudsley AA, Soher BJ, Schuff NW, Weiner MW (2002) Multisection proton MR spectroscopy for mesial temporal lobe epilepsy. AJNR Am J Neuroradiol 23(8):1359–1368Google Scholar
  13. Cataldi M, Avoli M, de Villers-Sidani E (2013) Resting state networks in temporal lobe epilepsy. Epilepsia 54(12):2048–2059.  https://doi.org/10.1111/epi.12400Google Scholar
  14. Chassoux F, Artiges E, Semah F, Desarnaud S, Laurent A, Landre E, Gervais P, Devaux B, Helal OB (2016) Determinants of brain metabolism changes in mesial temporal lobe epilepsy. Epilepsia 57(6):907–919.  https://doi.org/10.1111/epi.13377Google Scholar
  15. Chassoux F, Artiges E, Semah F, Laurent A, Landre E, Turak B, Gervais P, Helal BO, Devaux B (2017) (18)F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology 88(11):1045–1053.  https://doi.org/10.1212/wnl.0000000000003714Google Scholar
  16. Curia G, Lucchi C, Vinet J, Gualtieri F, Marinelli C, Torsello A, Costantino L, Biagini G (2014) Pathophysiogenesis of mesial temporal lobe epilepsy: is prevention of damage antiepileptogenic? Curr Med Chem 21(6):663–688Google Scholar
  17. Earle KM, Baldwin M, Penfield W (1953) Incisural sclerosis and temporal lobe seizures produced by hippocampal herniation by birth. Arch Neurol Psychiatry 69:27–42Google Scholar
  18. Falconer MA, Serafetinides EA, Corsellis JA (1964) Etiology and pathogenesis of temporal lobe epilepsy. Arch Neurol 10:233–248Google Scholar
  19. Gastaut H (1959) Etiology, pathology and pathogenesis of temporal lobe epilepsy. Epilepsy News, International League Against Epilepsy 15:15–24Google Scholar
  20. Gross DW (2011) Diffusion tensor imaging in temporal lobe epilepsy. Epilepsia 52(suppl 4):32–34.  https://doi.org/10.1111/j.1528-1167.2011.03149.xGoogle Scholar
  21. Hamelin S, Depaulis A (2015) Revisiting hippocampal sclerosis in mesial temporal lobe epilepsy according to the “two-hit” hypothesis. Rev Neurol 171(3):227–235.  https://doi.org/10.1016/j.neurol.2015.01.560Google Scholar
  22. Hwang SK, Hirose S (2012) Genetics of temporal lobe epilepsy. Brain Dev 34(8):609–616.  https://doi.org/10.1016/j.braindev.2011.10.008Google Scholar
  23. Jan MM, Sadler M, Rahey SR (2010) Electroencephalographic features of temporal lobe epilepsy. Can J Neurol Sci 37(4):439–448Google Scholar
  24. Josephson CB, Dykeman J, Fiest KM, Liu X, Sadler RM, Jette N, Wiebe S (2013) Systematic review and meta-analysis of standard vs selective temporal lobe epilepsy surgery. Neurology 80(18):1669–1676.  https://doi.org/10.1212/WNL.0b013e3182904f82Google Scholar
  25. Kandratavicius L, Ruggiero RN, Hallak JE, Garcia-Cairasco N, Leite JP (2012) Pathophysiology of mood disorders in temporal lobe epilepsy. Braz J Psychiatry 34(Suppl 2):S233–S245Google Scholar
  26. Kawamura MJ, Ruskin DN, Masino SA (2016) Metabolic therapy for temporal lobe epilepsy in a dish: investigating mechanisms of ketogenic diet using electrophysiological recordings in hippocampal slices. Front Mol Neurosci 9:112.  https://doi.org/10.3389/fnmol.2016.00112Google Scholar
  27. Kim SR (2016) Control of granule cell dispersion by natural materials such as eugenol and naringin: a potential therapeutic strategy against temporal lobe epilepsy. J Med Food 19(8):730–736.  https://doi.org/10.1089/jmf.2016.3712Google Scholar
  28. Kim JA, Chung JI, Yoon PH, Kim DI, Chung TS, Kim EJ, Jeong EK (2001) Transient MR signal changes in patients with generalized tonicoclonic seizure or status epilepticus: periictal diffusion-weighted imaging. AJNR Am J Neuroradiol 22(6):1149–1160Google Scholar
  29. Landazuri P (2014) Mesial temporal lobe epilepsy: a distinct electroclinical subtype of temporal lobe epilepsy. Neurodiagn J 54(3):274–288.  https://doi.org/10.1016/j.neuroscience.2014.12.047Google Scholar
  30. Leyden KM, Kucukboyaci NE, Puckett OK, Lee D, Loi RQ, Paul B, McDonald CR (2015) What does diffusion tensor imaging (DTI) tell us about cognitive networks in temporal lobe epilepsy? Quant Imaging Med Surg 5(2):247–263.  https://doi.org/10.3978/j.issn.2223-4292.2015.02.01Google Scholar
  31. Londono A, Castillo M, Lee YZ, Smith JK (2003) Apparent diffusion coefficient measurements in the hippocampi in patients with temporal lobe seizures. AJNR Am J Neuroradiol 24(8):1582–1586Google Scholar
  32. Magerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. Brain 89:499–530Google Scholar
  33. Malmgren K, Thom M (2012) Hippocampal sclerosis—origins and imaging. Epilepsia 53(suppl 4):19–33.  https://doi.org/10.1111/j.1528-1167.2012.03610.xGoogle Scholar
  34. McNamara JO, Scharfman HE (2012) Temporal lobe epilepsy and the BDNF receptor, TrkB. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV (eds) Jasper’s basic mechanisms of the epilepsies. National Center for Biotechnology Information, BethesdaGoogle Scholar
  35. Muhlhofer W, Tan YL, Mueller SG, Knowlton R (2017) MRI-negative temporal lobe epilepsy-what do we know? Epilepsia 58(5):727–742.  https://doi.org/10.1111/epi.13699Google Scholar
  36. Muzumdar D, Patil M, Goel A, Ravat S, Sawant N, Shah U (2016) Mesial temporal lobe epilepsy—an overview of surgical techniques. Int J Surg 36(pt B):411–419.  https://doi.org/10.1016/j.ijsu.2016.10.027Google Scholar
  37. Palleria C, Coppola A, Citraro R, Del Gaudio L, Striano S, De Sarro G, Russo E (2015) Perspectives on treatment options for mesial temporal lobe epilepsy with hippocampal sclerosis. Expert Opin Pharmacother 16(15):2355–2371.  https://doi.org/10.1517/14656566.2015.1084504Google Scholar
  38. Pascual MR (2007) Temporal lobe epilepsy: clinical semiology and neurophysiological studies. Semin Ultrasound CT MR 28(6):416–423Google Scholar
  39. Peter J, Houshmand S, Werner TJ, Rubello D, Alavi A (2016) Applications of global quantitative 18F-FDG-PET analysis in temporal lobe epilepsy. Nucl Med Commun 37(3):223–230.  https://doi.org/10.1097/mnm.0000000000000440Google Scholar
  40. Pillai JJ, Williams HT, Faro S (2007) Functional imaging in temporal lobe epilepsy. Semin Ultrasound CT MR 28(6):437–450Google Scholar
  41. Puttachary S, Sharma S (2015) Seizure-induced oxidative stress in temporal lobe epilepsy. Biomed Res Int 2015:745613.  https://doi.org/10.1155/2015/745613Google Scholar
  42. Rogawski MA, Delgado-Escueta AV, Noebels JL, Avoli M, Olsen RW (eds) (2012) Jasper’s basic mechanisms of the epilepsies, 4th edn. National Center for Biotechnology Information, BethesdaGoogle Scholar
  43. Rowley S, Patel M (2013) Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic Biol Med 62:121–131.  https://doi.org/10.1016/j.freeradbiomed.2013.02.002Google Scholar
  44. Schipper S, Aalbers MW, Rijkers K, Swijsen A, Rigo JM, Hoogland G, Vles JS (2016) Tonic GABAA receptors as potential target for the treatment of temporal lobe epilepsy. Mol Neurobiol 53(8):5252–5265.  https://doi.org/10.1007/s12035-015-9423-8Google Scholar
  45. Sommer W (1880) Erkrankung des Ammonshorns als ätiologischen Moment der Epilepsie. Arch Psychiat Nervenkr 10:631–675Google Scholar
  46. Stark S, Steinhauser C, Grunnet M, Carmignoto G (2016) Crucial role of astrocytes in temporal lobe epilepsy. Biomed Res Int 323:157–169.  https://doi.org/10.1016/j.neuroscience.2014.12.047Google Scholar
  47. Steinhauser C, Seifert G, Bedner P (2012) Astrocyte dysfunction in temporal lobe epilepsy: K+ channels and gap junction coupling. Glia 60(8):1192–1202.  https://doi.org/10.1002/glia.22313Google Scholar
  48. Stylianou P, Hoffmann C, Blat I, Harnof S (2016a) Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: part 1 structural neuroimaging. J Clin Neurosci 23:14–22.  https://doi.org/10.1016/j.jocn.2015.04.019Google Scholar
  49. Stylianou P, Kimchi G, Hoffmann C, Blat I, Harnof S (2016b) Neuroimaging for patient selection for medial temporal lobe epilepsy surgery: part 2 functional neuroimaging. J Clin Neurosci 23:23–33.  https://doi.org/10.1016/j.jocn.2015.04.031Google Scholar
  50. Tatum WO (2012) Mesial temporal lobe epilepsy. J Clin Neurophysiol 29(5):356–365.  https://doi.org/10.1097/WNP.0b013e31826b3ab7Google Scholar
  51. Thippeswamy T, Toth K, Magloczky Z (2014) The vulnerability of calretinin-containing hippocampal interneurons to temporal lobe epilepsy. Front Neuroanat 8:100.  https://doi.org/10.3389/fnana.2014.00100Google Scholar
  52. Tramoni-Negre E, Lambert I, Bartolomei F, Felician O (2017) Long-term memory deficits in temporal lobe epilepsy. Rev Neurol 173(7–8):490–497.  https://doi.org/10.1016/j.neurol.2017.06.011Google Scholar
  53. Werhahn KJ, Landvogt C, Klimpe S, Buchholz HG, Yakushev I, Siessmeier T, Muller-Forell W, Piel M, Rosch F, Glaser M, Schreckenberger M, Bartenstein P (2006) Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia 47(8):1392–1396.  https://doi.org/10.1111/j.1528-1167.2006.00561.xGoogle Scholar
  54. Wyler AR, Vossler DG (1997) Recent advancements in epilepsy. Surg Neurol 48(2):106–109Google Scholar
  55. Wyler AR, Hermann BP, Somes G (1995) Extent of medial temporal resection on outcome from anterior temporal lobectomy: a randomized prospective study. Neurosurgery 37(5):982–990; discussion 990–981Google Scholar
  56. Yilmazer-Hanke D, O’Loughlin E, McDermott K (2016) Contribution of amygdala pathology to comorbid emotional disturbances in temporal lobe epilepsy. J Neurosci Res 94(6):486–503.  https://doi.org/10.1002/jnr.23689Google Scholar
  57. Zhong Q, Ren BX, Tang FR (2016) Neurogenesis in the hippocampus of patients with temporal lobe epilepsy. Curr Neurol Neurosci Rep 16(2):20.  https://doi.org/10.1007/s11910-015-0616-3Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Serge Weis
    • 1
  • Michael Sonnberger
    • 2
  • Andreas Dunzinger
    • 3
  • Eva Voglmayr
    • 2
  • Martin Aichholzer
    • 4
  • Raimund Kleiser
    • 2
  • Peter Strasser
    • 5
  1. 1.Division of Neuropathology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  2. 2.Department of Neuroradiology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  3. 3.Department of Neuro-Nuclear Medicine, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  4. 4.Department of Neurosurgery, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  5. 5.PMU University Institute for Medical & Chemical Laboratory DiagnosticsSalzburgAustria

Personalised recommendations