Advertisement

Imaging Modalities: Neuropathology

  • Serge Weis
  • Michael Sonnberger
  • Andreas Dunzinger
  • Eva Voglmayr
  • Martin Aichholzer
  • Raimund Kleiser
  • Peter Strasser
Chapter
  • 427 Downloads

Abstract

Neuropathology is the medical discipline concerned with the study of diseases affecting the central and peripheral nervous system as well as muscle. Its aim is to describe the structural, biochemical, molecular, and functional changes in the various cells which make up the nervous system. Using morphologic, immunologic, and molecular biological techniques, neuropathology tries to explain the signs and symptoms of patients. Delivering a clear-cut diagnosis provides the rational basis for patient care and therapy. Specimens for analysis are obtained through autopsy (brain, spinal cord, meninges), open brain surgery, biopsy (stereotactic or navigated biopsy, muscle and nerve biopsy), and lumbar puncture. The procedures for removal, fixation, and cutting of the brain and spinal cord, fixation and processing of tissue are crucial in the analysis pipeline. Staining techniques for tissue received in the neuropathology laboratory include classical stains (Hematoxylin and Eosin (H&E)), special stains (Periodic acid-Schiff (PAS)), diastase-sensitive PAS or PAS with diastase digestion, Alcian blue), and special stains for connective tissue. Special neuro-stains include cresyl violet (Nissl stain), Luxol fast blue (LFB), phosphotungstic acid hematoxylin (PTAH), modified Bielschowsky, and Gallyas stain. The principles of immunohistochemistry are described and supplemented by short characterization of markers for neurons, synapses, astroglia, oligodendroglia, myelin, microglia, neurodegeneration, tumors, vessels, hematopoietic and lymphatic cells, proliferation markers in tumors, and markers for infectious agents. Immunohistochemical panels for the diagnostic setting are provided. Other techniques used in neuropathology comprise electron microscopy, fluorescence microscopy, enzyme histochemistry, and in situ hybridization (ISH). Molecular biology techniques as used in neuropathology include blot techniques (Western blot to visualize proteins, Northern blot to visualize RNA, Southern blot to visualize DNA, Dot blot), molecular imaging with imaging a mutation after sequencing and imaging a deletion, duplication with RT-PCR as well as microarray techniques. Other imaging techniques, developed during the last decades, include Confocal Laser Scanning Microscopy, Multiphoton Confocal Fluorescence Microscopy, Atomic Force Microscopy (AFM), and many others.

Selected References

  1. Alafuzoff I, Pikkarainen M, Parkkinen L (2015) Synucleinopathies. In: Kocvacs GG (ed) Neuropathology of neurodegenerative diseases. A practical guide. Cambridge University Press, Cambridge, pp 149–175Google Scholar
  2. Al-Mansoori KM, Hasan MY, Al-Hayani A, El-Agnaf OM (2013) The role of alpha-synuclein in neurodegenerative diseases: from molecular pathways in disease to therapeutic approaches. Curr Alzheimer Res 10(6):559–568Google Scholar
  3. Atkin G, Paulson H (2014) Ubiquitin pathways in neurodegenerative disease. Front Mol Neurosci 7:63.  https://doi.org/10.3389/fnmol.2014.00063Google Scholar
  4. Baralle M, Buratti E, Baralle FE (2013) The role of TDP-43 in the pathogenesis of ALS and FTLD. Biochem Soc Trans 41(6):1536–1540.  https://doi.org/10.1042/bst20130186Google Scholar
  5. Barinka F, Druga R (2010) Calretinin expression in the mammalian neocortex: a review. Physiol Res 59(5):665–677Google Scholar
  6. Barnett P (2003) Somatostatin and somatostatin receptor physiology. Endocrine 20(3):255–264.  https://doi.org/10.1385/endo:20:3:255Google Scholar
  7. Bates CA, Zheng W (2014) Fluids Barriers CNS 11:17.  https://doi.org/10.1186/2045-8118-11-17Google Scholar
  8. Benarroch EE (2009) Neuropeptide Y: its multiple effects in the CNS and potential clinical significance. Neurology 72(11):1016–1020.  https://doi.org/10.1212/01.wnl.0000345258.18071.54Google Scholar
  9. Bradl M, Lassmann H (2010) Oligodendrocytes: biology and pathology. Acta Neuropathol 119(1):37–53.  https://doi.org/10.1007/s00401-009-0601-5Google Scholar
  10. Briscoe J, Sussel L, Serup P, Hartigan-O’Connor D, Jessell TM, Rubenstein JL, Ericson J (1999) Homeobox gene Nkx2.2 and specification of neuronal identity by graded Sonic hedgehog signalling. Nature 398(6728):622–627.  https://doi.org/10.1038/19315Google Scholar
  11. Brown DR (2013) alpha-Synuclein as a ferrireductase. Biochem Soc Trans 41(6):1513–1517.  https://doi.org/10.1042/bst20130130Google Scholar
  12. Buffa R, Mare P, Salvadore M, Gini A (1990) Immunohistochemical detection of 28KDa calbindin in human tissues. Adv Exp Med Biol 269:205–210Google Scholar
  13. Butt AM, Kalsi A (2006) Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions. J Cell Mol Med 10(1):33–44Google Scholar
  14. Caffo M, Caruso G, Germano A, Galatioto S, Meli F, Tomasello F (2005) CD68 and CR3/43 immunohistochemical expression in secretory meningiomas. Neurosurgery 57(3):551–557; discussion 551–7.Google Scholar
  15. Cammer WB, Brion LP (2000) Carbonic anhydrase in the nervous system. EXS (90):475–489Google Scholar
  16. Camp AJ, Wijesinghe R (2009) Calretinin: modulator of neuronal excitability. Int J Biochem Cell Biol 41(11):2118–2121.  https://doi.org/10.1016/j.biocel.2009.05.007Google Scholar
  17. Campagnoni AT, Skoff RP (2001) The pathobiology of myelin mutants reveal novel biological functions of the MBP and PLP genes. Brain Pathol (Zurich, Switzerland) 11(1):74–91Google Scholar
  18. Cauli B, Zhou X, Tricoire L, Toussay X, Staiger JF (2014) Revisiting enigmatic cortical calretinin-expressing interneurons. Front Neuroanat 8:52.  https://doi.org/10.3389/fnana.2014.00052Google Scholar
  19. Clarke EJ, Allan V (2002) Intermediate filaments: vimentin moves in. Curr Biol 12(17):R596–R598Google Scholar
  20. DeFelipe J (1997) Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J Chem Neuroanat 14(1):1–19Google Scholar
  21. Dehmelt L, Halpain S (2005) The MAP2/Tau family of microtubule-associated proteins. Genome Biol 6(1):204.  https://doi.org/10.1186/gb-2004-6-1-204Google Scholar
  22. Di Giorgio ML, Esposito A, Maccallini P, Micheli E, Bavasso F, Gallotta I, Verni F, Feiguin F, Cacchione S, McCabe BD, Di Schiavi E, Raffa GD (2017) WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiol Dis 105:42–50.  https://doi.org/10.1016/j.nbd.2017.05.005Google Scholar
  23. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):24–57Google Scholar
  24. Dormann D, Haass C (2013) Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. Mol Cell Neurosci 56:475–486.  https://doi.org/10.1016/j.mcn.2013.03.006Google Scholar
  25. Duncan ID (2005) The PLP mutants from mouse to man. J Neurol Sci 228(2):204–205.  https://doi.org/10.1016/j.jns.2004.10.011Google Scholar
  26. Ebinu JO, Yankner BA (2002) A RIP tide in neuronal signal transduction. Neuron 34(4):499–502Google Scholar
  27. Eng LF (1985) Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 8(4–6):203–214Google Scholar
  28. Eng LF, Ghirnikar RS (1994) GFAP and astrogliosis. Brain Pathol (Zurich, Switzerland) 4(3):229–237Google Scholar
  29. Eng LF, Ghirnikar RS, Lee YL (2000) Glial fibrillary acidic protein: GFAP-thirty-one years (1969-2000). Neurochem Res 25(9–10):1439–1451Google Scholar
  30. Epelbaum J, Dournaud P, Fodor M, Viollet C (1994) The neurobiology of somatostatin. Crit Rev Neurobiol 8(1–2):25–44Google Scholar
  31. Evans RM (1998) Vimentin: the conundrum of the intermediate filament gene family. Bioessays 20(1):79–86.  https://doi.org/10.1002/(sici)1521-1878(199801)20:1<79::aid-bies11>3.0.co;2-5Google Scholar
  32. Fancy SP, Zhao C, Franklin RJ (2004) Increased expression of Nkx2.2 and Olig2 identifies reactive oligodendrocyte progenitor cells responding to demyelination in the adult CNS. Mol Cell Neurosci 27(3):247–254.  https://doi.org/10.1016/j.mcn.2004.06.015Google Scholar
  33. Fauser S, Haussler U, Donkels C, Huber S, Nakagawa J, Prinz M, Schulze-Bonhage A, Zentner J, Haas CA (2013) Disorganization of neocortical lamination in focal cortical dysplasia is brain-region dependent: evidence from layer-specific marker expression. Acta Neuropathol Commun 1(1):47.  https://doi.org/10.1186/2051-5960-1-47Google Scholar
  34. Friedrich P, Aszodi A (1991) MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture. FEBS Lett 295(1–3):5–9Google Scholar
  35. Geetha T, Vishwaprakash N, Sycheva M, Babu JR (2012) Sequestosome 1/p62: across diseases. Biomarkers 17(2):99–103.  https://doi.org/10.3109/1354750x.2011.653986Google Scholar
  36. George S, Rey NL, Reichenbach N, Steiner JA, Brundin P (2013) alpha-Synuclein: the long distance runner. Brain Pathol (Zurich, Switzerland) 23(3):350–357.  https://doi.org/10.1111/bpa.12046Google Scholar
  37. Giacobini E (1987) Carbonic anhydrase: the first marker of glial development. Curr Top Dev Biol 21:207–215Google Scholar
  38. Gottron F, Turetsky D, Choi D (1995) SMI-32 antibody against non-phosphorylated neurofilaments identifies a subpopulation of cultured cortical neurons hypersensitive to kainate toxicity. Neurosci Lett 194(1–2):1–4Google Scholar
  39. Graeber MB, Bise K, Mehraein P (1994) CR3/43, a marker for activated human microglia: application to diagnostic neuropathology. Neuropathol Appl Neurobiol 20(4):406–408Google Scholar
  40. Grandpre T, Strittmatter SM (2001) Nogo: a molecular determinant of axonal growth and regeneration. Neuroscientist 7(5):377–386Google Scholar
  41. Griffiths I, Klugmann M, Anderson T, Thomson C, Vouyiouklis D, Nave KA (1998) Current concepts of PLP and its role in the nervous system. Microsc Res Tech 41(5):344–358.  https://doi.org/10.1002/(sici)1097-0029(19980601)41:5<344::aid-jemt2>3.0.co;2-qGoogle Scholar
  42. Hayden EY, Teplow DB (2013) Amyloid beta-protein oligomers and Alzheimer’s disease. Alzheimers Res Ther 5(6):60.  https://doi.org/10.1186/alzrt226Google Scholar
  43. Heilig M, Widerlov E (1995) Neurobiology and clinical aspects of neuropeptide Y. Crit Rev Neurobiol 9(2–3):115–136Google Scholar
  44. Heizmann CW (1999) Ca2+-binding S100 proteins in the central nervous system. Neurochem Res 24(9):1097–1100Google Scholar
  45. Heizmann CW, Fritz G, Schafer BW (2002) S100 proteins: structure, functions and pathology. Front Biosci 7:d1356–d1368Google Scholar
  46. Hendy GN, Bevan S, Mattei MG, Mouland AJ (1995) Chromogranin A. Clin Invest Med 18(1):47–65Google Scholar
  47. Hof PR, Glezer II, Conde F, Flagg RA, Rubin MB, Nimchinsky EA, Vogt Weisenhorn DM (1999) Cellular distribution of the calcium-binding proteins parvalbumin, calbindin, and calretinin in the neocortex of mammals: phylogenetic and developmental patterns. J Chem Neuroanat 16(2):77–116Google Scholar
  48. Hu H, Gan J, Jonas P (2014) Interneurons. Fast-spiking, parvalbumin(+) GABAergic interneurons: from cellular design to microcircuit function. Science (New York, NY) 345(6196):1255263.  https://doi.org/10.1126/science.1255263Google Scholar
  49. Huber AB, Schwab ME (2000) Nogo-A, a potent inhibitor of neurite outgrowth and regeneration. Biol Chem 381(5–6):407–419.  https://doi.org/10.1515/bc.2000.053Google Scholar
  50. Jackson P, Blythe D (2012) Immunohistochemical techniques. In: Suvarna KS, Layton C, Bancroft JD (eds) Bancroft’s theory and practice of histological techniques, 7th edn. Churchill Livingstone, Edinburgh, pp 381–426Google Scholar
  51. Jansen AH, Reits EA, Hol EM (2014) The ubiquitin proteasome system in glia and its role in neurodegenerative diseases. Front Mol Neurosci 7:73.  https://doi.org/10.3389/fnmol.2014.00073Google Scholar
  52. Janssens J, Van Broeckhoven C (2013) Pathological mechanisms underlying TDP-43 driven neurodegeneration in FTLD-ALS spectrum disorders. Hum Mol Genet 22(R1):R77–R87.  https://doi.org/10.1093/hmg/ddt349Google Scholar
  53. Jessen KR, Morgan L, Brammer M, Mirsky R (1985) Galactocerebroside is expressed by non-myelin-forming Schwann cells in situ. J Cell Biol 101(3):1135–1143Google Scholar
  54. Johnstone M, Goold RG, Bei D, Fischer I, Gordon-Weeks PR (1997) Localisation of microtubule-associated protein 1B phosphorylation sites recognised by monoclonal antibody SMI-31. J Neurochem 69(4):1417–1424Google Scholar
  55. Kawaguchi Y, Kondo S (2002) Parvalbumin, somatostatin and cholecystokinin as chemical markers for specific GABAergic interneuron types in the rat frontal cortex. J Neurocytol 31(3–5):277–287Google Scholar
  56. Kligman D, Hilt DC (1988) The S100 protein family. Trends Biochem Sci 13(11):437–443.  https://doi.org/10.1016/0968-0004(88)90218-6Google Scholar
  57. Knowles TP, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15(6):384–396.  https://doi.org/10.1038/nrm3810Google Scholar
  58. Komatsu M, Kageyama S, Ichimura Y (2012) p62/SQSTM1/A170: physiology and pathology. Pharmacol Res 66(6):457–462.  https://doi.org/10.1016/j.phrs.2012.07.004Google Scholar
  59. Kovacs GG, Gelpi E, Lehotzky A, Hoftberger R, Erdei A, Budka H, Ovadi J (2007) The brain-specific protein TPPP/p25 in pathological protein deposits of neurodegenerative diseases. Acta Neuropathol 113(2):153–161.  https://doi.org/10.1007/s00401-006-0167-4Google Scholar
  60. Kummer MP, Heneka MT (2014) Truncated and modified amyloid-beta species. Alzheimers Res Ther 6(3):28.  https://doi.org/10.1186/alzrt258Google Scholar
  61. Labbe C, Rayaprolu S, Soto-Ortolaza A, Ogaki K, Uitti RJ, Wszolek ZK, Ross OA (2014) Investigating FUS variation in Parkinson’s disease. Parkinsonism Relat Disord 20(Suppl 1):S147–S149.  https://doi.org/10.1016/s1353-8020(13)70035-xGoogle Scholar
  62. Lamberts JT, Hildebrandt EN, Brundin P (2015) Spreading of alpha-synuclein in the face of axonal transport deficits in Parkinson’s disease: a speculative synthesis. Neurobiol Dis 77:276–283.  https://doi.org/10.1016/j.nbd.2014.07.002Google Scholar
  63. Lanson NA Jr, Pandey UB (2012) FUS-related proteinopathies: lessons from animal models. Brain Res 1462:44–60.  https://doi.org/10.1016/j.brainres.2012.01.039Google Scholar
  64. Lee HJ, Bae EJ, Lee SJ (2014) Extracellular alpha--synuclein-a novel and crucial factor in Lewy body diseases. Nat Rev Neurol 10(2):92–98.  https://doi.org/10.1038/nrneurol.2013.275Google Scholar
  65. Ligon KL, Fancy SP, Franklin RJ, Rowitch DH (2006) Olig gene function in CNS development and disease. Glia 54(1):1–10.  https://doi.org/10.1002/glia.20273Google Scholar
  66. Liu YC, Chiang PM, Tsai KJ (2013) Disease animal models of TDP-43 proteinopathy and their pre-clinical applications. Int J Mol Sci 14(10):20079–20111.  https://doi.org/10.3390/ijms141020079Google Scholar
  67. Lloyd RV (1987) Immunohistochemical localization of chromogranin in normal and neoplastic endocrine tissues. Pathol Annu 22(Pt 2):69–90Google Scholar
  68. Loh YP, Cheng Y, Mahata SK, Corti A, Tota B (2012) Chromogranin A and derived peptides in health and disease. J Mol Neurosci 48(2):347–356.  https://doi.org/10.1007/s12031-012-9728-2Google Scholar
  69. Meier-Ruge WA, Bruder E (2008) Current concepts of enzyme histochemistry in modern pathology. Pathobiology 75(4):233–243.  https://doi.org/10.1159/000132384Google Scholar
  70. Middeldorp J, Hol EM (2011) GFAP in health and disease. Prog Neurobiol 93(3):421–443.  https://doi.org/10.1016/j.pneurobio.2011.01.005Google Scholar
  71. Minin AA, Moldaver MV (2008) Intermediate vimentin filaments and their role in intracellular organelle distribution. Biochemistry (Mosc) 73(13):1453–1466Google Scholar
  72. Mokhtari K, Paris S, Aguirre-Cruz L, Privat N, Criniere E, Marie Y, Hauw JJ, Kujas M, Rowitch D, Hoang-Xuan K, Delattre JY, Sanson M (2005) Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathol Appl Neurobiol 31(1):62–69.  https://doi.org/10.1111/j.1365-2990.2004.00612.xGoogle Scholar
  73. Morel A, Loup F, Magnin M, Jeanmonod D (2002) Neurochemical organization of the human basal ganglia: anatomofunctional territories defined by the distributions of calcium-binding proteins and SMI-32. J Comp Neurol 443(1):86–103Google Scholar
  74. Morel L, Regan M, Higashimori H, Ng SK, Esau C, Vidensky S, Rothstein J, Yang Y (2013) Neuronal exosomal miRNA-dependent translational regulation of astroglial glutamate transporter GLT1. J Biol Chem 288(10):7105–7116.  https://doi.org/10.1074/jbc.M112.410944Google Scholar
  75. Mu QQ, Dyer C (1994) Developmental expression of MOSP in cultured oligodendrocytes. Neurochem Res 19(8):1033–1038Google Scholar
  76. Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Development (Cambridge, England) 116(1):201–211Google Scholar
  77. Nash DL, Bellolio MF, Stead LG (2008) S100 as a marker of acute brain ischemia: a systematic review. Neurocrit Care 8(2):301–307.  https://doi.org/10.1007/s12028-007-9019-xGoogle Scholar
  78. O’Connor DT, Mahata SK, Taupenot L, Mahata M, Livsey Taylor CV, Kailasam MT, Ziegler MG, Parmer RJ (2000) Chromogranin A in human disease. Adv Exp Med Biol 482:377–388.  https://doi.org/10.1007/0-306-46837-9_31Google Scholar
  79. Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107(3):589–601.  https://doi.org/10.1111/j.1471-4159.2008.05615.xGoogle Scholar
  80. Orozco D, Edbauer D (2013) FUS-mediated alternative splicing in the nervous system: consequences for ALS and FTLD. J Mol Med (Berl) 91(12):1343–1354.  https://doi.org/10.1007/s00109-013-1077-2Google Scholar
  81. Ozansoy M, Basak AN (2013) The central theme of Parkinson’s disease: alpha-synuclein. Mol Neurobiol 47(2):460–465.  https://doi.org/10.1007/s12035-012-8369-3Google Scholar
  82. Pekny M (2001) Astrocytic intermediate filaments: lessons from GFAP and vimentin knock-out mice. Prog Brain Res 132:23–30.  https://doi.org/10.1016/s0079-6123(01)32062-9Google Scholar
  83. Peters A, Palay SL, Webster HD (1991) The fine structure of the nervous system. Neurons and their supporting cells. Oxford University Press, New YorkGoogle Scholar
  84. Preusser M, Lehotzky A, Budka H, Ovadi J, Kovacs GG (2007) TPPP/p25 in brain tumours: expression in non-neoplastic oligodendrocytes but not in oligodendroglioma cells. Acta Neuropathol 113(2):213–215.  https://doi.org/10.1007/s00401-006-0173-6Google Scholar
  85. Protas L, Qu J, Robinson RB (2003) Neuropeptide y: neurotransmitter or trophic factor in the heart? News Physiol Sci 18:181–185Google Scholar
  86. Qi Y, Cai J, Wu Y, Wu R, Lee J, Fu H, Rao M, Sussel L, Rubenstein J, Qiu M (2001) Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor. Development (Cambridge, England) 128(14):2723–2733Google Scholar
  87. Rauen T, Wiessner M (2000) Fine tuning of glutamate uptake and degradation in glial cells: common transcriptional regulation of GLAST1 and GS. Neurochem Int 37(2–3):179–189Google Scholar
  88. Rhodes A (2012) Fixation of tissues. In: Suvarna KS, Layton C, Bancroft JD (eds) Bancroft’s theory and practice of histological techniques, 7th edn. Churchill Livingstone, Edinburgh, pp 69–93Google Scholar
  89. Rogers J, Khan M, Ellis J (1990) Calretinin and other CaBPs in the nervous system. Adv Exp Med Biol 269:195–203Google Scholar
  90. Rostami A, Eccleston PA, Silberberg DH, Hirayama M, Lisak RP, Pleasure DE, Phillips SM (1984) Generation and biological properties of a monoclonal antibody to galactocerebroside. Brain Res 298(2):203–208Google Scholar
  91. Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I (2012) Emerging role of p62/sequestosome-1 in the pathogenesis of Alzheimer’s disease. Prog Neurobiol 96(1):87–95.  https://doi.org/10.1016/j.pneurobio.2011.11.005Google Scholar
  92. Sanchez C, Diaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168Google Scholar
  93. Schindler M, Humphrey PP, Emson PC (1996) Somatostatin receptors in the central nervous system. Prog Neurobiol 50(1):9–47Google Scholar
  94. Schmandke A, Schmandke A, Schwab ME (2014) Nogo-A: multiple roles in CNS development, maintenance, and disease. Neuroscientist 20(4):372–386.  https://doi.org/10.1177/1073858413516800Google Scholar
  95. Schmidt H (2012) Three functional facets of calbindin D-28k. Front Mol Neurosci 5:25.  https://doi.org/10.3389/fnmol.2012.00025Google Scholar
  96. Schmitt A, Asan E, Puschel B, Jons T, Kugler P (1996) Expression of the glutamate transporter GLT1 in neural cells of the rat central nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 71(4):989–1004Google Scholar
  97. Schwaller B, Meyer M, Schiffmann S (2002) ‘New’ functions for ‘old’ proteins: the role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum (London, England) 1(4):241–258.  https://doi.org/10.1080/147342202320883551Google Scholar
  98. Shea TB, Beermann ML (1993) Evidence that the monoclonal antibodies SMI-31 and SMI-34 recognize different phosphorylation-dependent epitopes of the murine high molecular mass neurofilament subunit. J Neuroimmunol 44(1):117–121Google Scholar
  99. Soula C, Danesin C, Kan P, Grob M, Poncet C, Cochard P (2001) Distinct sites of origin of oligodendrocytes and somatic motoneurons in the chick spinal cord: oligodendrocytes arise from Nkx2.2-expressing progenitors by a Shh-dependent mechanism. Development (Cambridge, England) 128(8):1369–1379Google Scholar
  100. Spencer LT, Bancroft JD, Jones WG (2012) Tissue processing and microarray. In: Suvarna KS, Layton C, Bancroft JD (eds) Bancroft’s theory and practice of histological techniques, 7th edn. Churchill Livingstone, Edinburgh, pp 105–123Google Scholar
  101. Sperk G, Hamilton T, Colmers WF (2007) Neuropeptide Y in the dentate gyrus. Prog Brain Res 163:285–297.  https://doi.org/10.1016/s0079-6123(07)63017-9Google Scholar
  102. Spillantini MG, Goedert M (2013) Tau pathology and neurodegeneration. Lancet Neurol 12(6):609–622.  https://doi.org/10.1016/s1474-4422(13)70090-5Google Scholar
  103. Staugaitis SM, Trapp BD (2009) NG2-positive glia in the human central nervous system. Neuron Glia Biol 5(3–4):35–44.  https://doi.org/10.1017/s1740925x09990342Google Scholar
  104. Stoffel W, Korner R, Wachtmann D, Keller BU (2004) Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice. Brain Res Mol Brain Res 128(2):170–181.  https://doi.org/10.1016/j.molbrainres.2004.06.026Google Scholar
  105. Takashima A (2013) Tauopathies and tau oligomers. J Alzheimers Dis 37(3):565–568.  https://doi.org/10.3233/jad-130653Google Scholar
  106. Tallent MK (2007) Somatostatin in the dentate gyrus. Prog Brain Res 163:265–284.  https://doi.org/10.1016/s0079-6123(07)63016-7Google Scholar
  107. Thiel G (1993) Synapsin I, synapsin II, and synaptophysin: marker proteins of synaptic vesicles. Brain Pathol (Zurich, Switzerland) 3(1):87–95Google Scholar
  108. Trotter J, Karram K, Nishiyama A (2010) NG2 cells: properties, progeny and origin. Brain Res Rev 63(1–2):72–82.  https://doi.org/10.1016/j.brainresrev.2009.12.006Google Scholar
  109. Uchida T, Takahashi K, Yamaguchi H, Nagai Y (1981) Localization of galactocerebroside in oligodendrocytes, myelin sheath and choroid plexus. Jpn J Exp Med 51(1):29–35Google Scholar
  110. Usman W, Asim A (2005) Histotechniques: laboratory techniques in histopathology: a handbook for medical technologists. LAP LAMPERT Academic PublishingGoogle Scholar
  111. Voelker CC, Garin N, Taylor JS, Gahwiler BH, Hornung JP, Molnar Z (2004) Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro. Cereb Cortex (New York, NY: 1991) 14(11):1276–1286.  https://doi.org/10.1093/cercor/bhh089Google Scholar
  112. Wiedenmann B (1991) Synaptophysin. A widespread constituent of small neuroendocrine vesicles and a new tool in tumor diagnosis. Acta Oncol (Stockholm, Sweden) 30(4):435–440Google Scholar
  113. Willis M, Leitner I, Jellinger KA, Marksteiner J (2011) Chromogranin peptides in brain diseases. J Neural Transm 118(5):727–735.  https://doi.org/10.1007/s00702-011-0648-zGoogle Scholar
  114. Wouterlood FG (2012) Cellular imaging techniques for neuroscience and beyond. Elsevier, AmsterdamGoogle Scholar
  115. Xu JP, Zhao J, Li S (2011) Roles of NG2 glial cells in diseases of the central nervous system. Neurosci Bull 27(6):413–421.  https://doi.org/10.1007/s12264-011-1838-2Google Scholar
  116. Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A, Gao Y, Vidensky S, Brennan J, Poulsen D, Won Park J, Li Jeon N, Robinson MB, Rothstein JD (2009) Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61(6):880–894.  https://doi.org/10.1016/j.neuron.2009.02.010Google Scholar
  117. Yang Y, Gozen O, Vidensky S, Robinson MB, Rothstein JD (2010) Epigenetic regulation of neuron-dependent induction of astroglial synaptic protein GLT1. Glia 58(3):277–286.  https://doi.org/10.1002/glia.20922Google Scholar
  118. Youmans KL, Wolozin B (2012) TDP-43: a new player on the AD field? Exp Neurol 237(1):90–95.  https://doi.org/10.1016/j.expneurol.2012.05.018Google Scholar
  119. Zimmer DB, Cornwall EH, Landar A, Song W (1995) The S100 protein family: history, function, and expression. Brain Res Bull 37(4):417–429Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Serge Weis
    • 1
  • Michael Sonnberger
    • 2
  • Andreas Dunzinger
    • 3
  • Eva Voglmayr
    • 2
  • Martin Aichholzer
    • 4
  • Raimund Kleiser
    • 2
  • Peter Strasser
    • 5
  1. 1.Division of Neuropathology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  2. 2.Department of Neuroradiology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  3. 3.Department of Neuro-Nuclear Medicine, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  4. 4.Department of Neurosurgery, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  5. 5.PMU University Institute for Medical & Chemical Laboratory DiagnosticsSalzburgAustria

Personalised recommendations