Advertisement

Infections: Fungi

  • Serge Weis
  • Michael Sonnberger
  • Andreas Dunzinger
  • Eva Voglmayr
  • Martin Aichholzer
  • Raimund Kleiser
  • Peter Strasser
Chapter
  • 402 Downloads

Abstract

Fungal infections of the brain are seen among immunocompromised individuals (transplant patients, HIV-infected patients, cancer patients undergoing chemotherapy, and hospitalized people with serious underlying diseases). The clinical signs are variable.

Based on morphology and mode of spore production, fungi are classified as yeasts (unicellular) or molds (multicellular organisms). The most common infectious agents include Aspergillus spp., Cryptococcus neoformans, Histoplasma capsulatum, and Candida ssp. In general, multiple parenchymal lesions with variable parenchymal and leptomeningeal enhancement are detected using radiologic imaging techniques. With the use of special stains (Gomori methenamine silver, Grocott, perjodic acid-Schiff, mucicarmine, Gram stain, and Giemsa stain) the agents can be visualized and their morphology (septation, branching, budding, hyphae) determined.

Treatment is performed with antifungal agents. Clinical outcome depends on the sanitation of the primary focus and the state of immunodeficiency or immunocompetence.

Selected References

  1. Almeida F, Wolf JM, Casadevall A (2015) Virulence-associated enzymes of cryptococcus neoformans. Eukaryot Cell 14(12):1173–1185.  https://doi.org/10.1128/ec.00103-15Google Scholar
  2. Ashdown BC, Tien RD, Felsberg GJ (1994) Aspergillosis of the brain and paranasal sinuses in immunocompromised patients: CT and MR imaging findings. AJR Am J Roentgenol 162(1):155–159.  https://doi.org/10.2214/ajr.162.1.8273655Google Scholar
  3. Brown SM, Campbell LT, Lodge JK (2007) Cryptococcus neoformans, a fungus under stress. Curr Opin Microbiol 10(4):320–325.  https://doi.org/10.1016/j.mib.2007.05.014Google Scholar
  4. Chai LY, Vonk AG, Kullberg BJ, Netea MG (2011) Immune response to Aspergillus fumigatus in compromised hosts: from bedside to bench. Future Microbiol 6(1):73–83.  https://doi.org/10.2217/fmb.10.158Google Scholar
  5. Cheng YC, Ling JF, Chang FC, Wang SJ, Fuh JL, Chen SS, Teng MM, Chang CY (2003) Radiological manifestations of cryptococcal infection in central nervous system. J Chin Med Assoc 66(1):19–26Google Scholar
  6. Coelho C, Bocca AL, Casadevall A (2014a) The intracellular life of Cryptococcus neoformans. Annu Rev Pathol 9:219–238.  https://doi.org/10.1146/annurev-pathol-012513-104653.
  7. Coelho C, Bocca AL, Casadevall A (2014b) The tools for virulence of Cryptococcus neoformans. Adv Appl Microbiol 87:1–41.  https://doi.org/10.1016/b978-0-12-800261-2.00001-3. 10.2217/fmb.14.132Google Scholar
  8. da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, Gow NA (2016) Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 34:111–118.  https://doi.org/10.1016/j.mib.2016.08.006Google Scholar
  9. Dagenais TR, Keller NP (2009) Pathogenesis of Aspergillus fumigatus in Invasive Aspergillosis. Clin Microbiol Rev 22(3):447–465.  https://doi.org/10.1128/cmr.00055-08Google Scholar
  10. DeLeon-Rodriguez CM, Casadevall A (2016) Cryptococcus neoformans: tripping on Acid in the Phagolysosome. Front Microbiol 7:164.  https://doi.org/10.3389/fmicb.2016.00164Google Scholar
  11. Ghazaei C (2017) Molecular insights into pathogenesis and infection with aspergillus fumigatus. Malays J Med Sci 24(1):10–20.  https://doi.org/10.21315/mjms2017.24.1.2Google Scholar
  12. Gibbons JG, Rokas A (2013) The function and evolution of the Aspergillus genome. Trends Microbiol 21(1):14–22.  https://doi.org/10.1016/j.tim.2012.09.005Google Scholar
  13. Goncalves SS, Souza AC, Chowdhary A, Meis JF, Colombo AL (2016) Epidemiology and molecular mechanisms of antifungal resistance in Candida and Aspergillus. Mycoses 59(4):198–219.  https://doi.org/10.1111/myc.12469Google Scholar
  14. Hall RA, Cottier F, Muhlschlegel FA (2009) Molecular networks in the fungal pathogen Candida albicans. Adv Appl Microbiol 67:191–212.  https://doi.org/10.1016/s0065-2164(08)01006-xGoogle Scholar
  15. Harrison TS (2000) Cryptococcus neoformans and cryptococcosis. J Infect 41(1):12–17.  https://doi.org/10.1053/jinf.2000.0695Google Scholar
  16. Hohl TM, Feldmesser M (2007) Aspergillus fumigatus: principles of pathogenesis and host defense. Eukaryot Cell 6(11):1953–1963.  https://doi.org/10.1128/ec.00274-07Google Scholar
  17. Hole C, Wormley FL Jr (2016) Innate host defenses against Cryptococcus neoformans. J Microbiol (Seoul, Korea) 54(3):202–211.  https://doi.org/10.1007/s12275-016-5625-7Google Scholar
  18. Jabra-Rizk MA, Kong EF, Tsui C, Nguyen MH, Clancy CJ, Fidel PL Jr, Noverr M (2016) Candida albicans pathogenesis: fitting within the host-microbe damage response framework. Infect Immun 84(10):2724–2739.  https://doi.org/10.1128/iai.00469-16Google Scholar
  19. Karkowska-Kuleta J, Rapala-Kozik M, Kozik A (2009) Fungi pathogenic to humans: molecular bases of virulence of Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus. Acta Biochim Pol 56(2):211–224Google Scholar
  20. Kim J, Sudbery P (2011) Candida albicans, a major human fungal pathogen. J Microbiol (Seoul, Korea) 49(2):171–177.  https://doi.org/10.1007/s12275-011-1064-7Google Scholar
  21. Lamoth F (2016) Aspergillus fumigatus-related species in clinical practice. Front Microbiol 7:683.  https://doi.org/10.3389/fmicb.2016.00683Google Scholar
  22. Lin X (2009) Cryptococcus neoformans: morphogenesis, infection, and evolution. Infect Genet Evol 9(4):401–416.  https://doi.org/10.1016/j.meegid.2009.01.013Google Scholar
  23. Lin X, Heitman J (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60:69–105.  https://doi.org/10.1146/annurev.micro.60.080805.142102Google Scholar
  24. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4(2):119–128.  https://doi.org/10.4161/viru.22913Google Scholar
  25. Naglik JR, Richardson JP, Moyes DL (2014) Candida albicans pathogenicity and epithelial immunity. PLoS Pathog 10(8):e1004257.  https://doi.org/10.1371/journal.ppat.1004257Google Scholar
  26. Nobile CJ, Johnson AD (2015) Candida albicans biofilms and human disease. Annu Rev Microbiol 69:71–92.  https://doi.org/10.1146/annurev-micro-091014-104330Google Scholar
  27. Noble SM, Gianetti BA, Witchley JN (2017) Candida albicans cell-type switching and functional plasticity in the mammalian host. Nat Rev Microbiol 15(2):96–108.  https://doi.org/10.1038/nrmicro.2016.157Google Scholar
  28. O’Meara TR, Alspaugh JA (2012) The Cryptococcus neoformans capsule: a sword and a shield. Clin Microbiol Rev 25(3):387–408.  https://doi.org/10.1128/cmr.00001-12Google Scholar
  29. Perfect JR (2006) Cryptococcus neoformans: the yeast that likes it hot. FEMS Yeast Res 6(4):463–468.  https://doi.org/10.1111/j.1567-1364.2006.00051.xGoogle Scholar
  30. Poulain D (2015) Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol 41(2):208–217.  https://doi.org/10.3109/1040841x.2013.813904Google Scholar
  31. Powers-Fletcher MV, Hanson KE (2016) Molecular diagnostic testing for Aspergillus. J Clin Microbiol 54(11):2655–2660.  https://doi.org/10.1128/jcm.00818-16Google Scholar
  32. Rohatgi S, Pirofski LA (2015) Host immunity to Cryptococcus neoformans. Future Microbiol 10(4):565–581.  https://doi.org/10.2217/fmb.14.132.
  33. Sabiiti W, May RC (2012) Mechanisms of infection by the human fungal pathogen Cryptococcus neoformans. Future Microbiol 7(11):1297–1313.  https://doi.org/10.2217/fmb.12.102Google Scholar
  34. Sellam A, Whiteway M (2016) Recent advances on Candida albicans biology and virulence. F1000Res 5:2582.  https://doi.org/10.12688/f1000research.9617.1Google Scholar
  35. Starkey J, Moritani T, Kirby P (2014) MRI of CNS fungal infections: review of aspergillosis to histoplasmosis and everything in between. Clin Neuroradiol 24(3):217–230.  https://doi.org/10.1007/s00062-014-0305-7Google Scholar
  36. Sugui JA, Kwon-Chung KJ, Juvvadi PR, Latge JP, Steinbach WJ (2014) Aspergillus fumigatus and related species. Cold Spring Harb Perspect Med 5(2):a019786.  https://doi.org/10.1101/cshperspect.a019786Google Scholar
  37. Tam JM, Mansour MK, Acharya M, Sokolovska A, Timmons AK, Lacy-Hulbert A, Vyas JM (2016) The role of autophagy-related proteins in Candida albicans infections. Pathogens (Basel, Switzerland) 5(2):E34.  https://doi.org/10.3390/pathogens5020034Google Scholar
  38. Zhang M, Sun D, Shi M (2015) Dancing cheek to cheek: Cryptococcus neoformans and phagocytes. Mycoses 4:410.  https://doi.org/10.1186/s40064-015-1192-3. 10.1111/myc.12415Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Serge Weis
    • 1
  • Michael Sonnberger
    • 2
  • Andreas Dunzinger
    • 3
  • Eva Voglmayr
    • 2
  • Martin Aichholzer
    • 4
  • Raimund Kleiser
    • 2
  • Peter Strasser
    • 5
  1. 1.Division of Neuropathology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  2. 2.Department of Neuroradiology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  3. 3.Department of Neuro-Nuclear Medicine, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  4. 4.Department of Neurosurgery, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  5. 5.PMU University Institute for Medical & Chemical Laboratory DiagnosticsSalzburgAustria

Personalised recommendations