Advertisement

Localization of Brain Function

  • Serge Weis
  • Michael Sonnberger
  • Andreas Dunzinger
  • Eva Voglmayr
  • Martin Aichholzer
  • Raimund Kleiser
  • Peter Strasser
Chapter
  • 412 Downloads

Abstract

Localization of brain function is the goal of cognitive neuroscience, behavioral neurology, and clinical neuroanatomy. Its armamentarium relies on connectional methods (diffusion tensor imaging), correlational methods (e.g., magnetic resonance imaging, functional magnetic resonance imaging, voxel-based morphometry, positron emission tomography), lesion models (e.g., traumatic brain injuries), and stimulation methods (e.g., transcranial magnetic stimulation). Theories of brain function include holistic, localizationist, and associationist models.

Localization of brain function is described following the various cerebral lobes, i.e., frontal lobe (with the primary motor cortex, supplementary motor area, premotor cortex, prefrontal cortex, and orbitofrontal area of the frontal pole), parietal lobe (with primary somatosensory cortex, secondary somatosensory cortex, somatosensory association area, postcentral gyrus, superior and inferior parietal lobules, supramarginal and angular gyri, angular gyrus, and cuneus), occipital lobe (with primary visual cortex, visual association cortex, mesial and lateral aspect), temporal lobe (with primary auditory cortex, auditory association cortex, inferomedial aspect of the amygdala and hippocampus, anterior tip including amygdala; bilateral lesions, latero-inferior aspect, latero-superior aspect, and regions with epileptogenic lesions).

Language areas include Wernicke’s area and Broca’s area.

Cortical syndromes are grouped in right (non-dominant) hemisphere syndromes (i.e., constructional apraxia, dressing apraxia, neglect and denial, and color blindness), dominant (left) hemisphere syndromes (i.e., ideomotor apraxia, visual agnosia, alexia without agraphia, Gerstmann’s syndrome, and color agnosia), and bi-hemispheric syndromes (i.e., ideational apraxia and Anton syndrome). Aphasias include global aphasia, Broca’s aphasia, Wernicke’s aphasia, conduction aphasia, transcortical sensory aphasia, and transcortical motor aphasia.

The limbic system, with its various regions, plays important functions: hippocampus (recent memory, modulation of emotions), amygdala (olfaction, emotive behavior, integration of autonomic visceral activity), stria terminalis (autonomic response to fear, rage, and other emotions), septal nuclei (pleasure center of the brain), and cingulate cortex (cortical regulation of basic autonomic functions, behavior, and emotional modulation of pain).

Corpus callosum disconnection syndromes are described.

Basal ganglia are involved in the regulation of motor function, initiation and coordination of motor activities, and cognitive functioning

The thalamus as an important relay station is, when lesioned, responsible for sensory disturbances, motor disturbances, disturbances of alertness, mood and affect, memory, visual disturbances, autonomic disturbances, disturbances of complex sensorimotor functions and executive functions. The hypothalamus regulates functions of metabolism, body temperature, sleep, and emotional behavior.

The cerebellum is functionally concerned with the coordination of locomotion, the control of muscle tone, and the regulation of equilibrium.

White matter tracts and its involvement in normal function and dysfunction can be considered as the perisylvian white matter, the early visual pathways white matter, the white matter of the ventral and dorsal visual pathways matter, and the white matter of extended visual pathways matter.

Selected References

  1. Acciarresi M (2012) Agnosia, apraxia, callosal disconnection and other specific cognitive disorders. Front Neurol Neurosci 30:75–78.  https://doi.org/10.1159/000333419Google Scholar
  2. Acharya AB, Dulebohn SC (2018a) Aphasia, Broca. In: StatPearls. StatPearls Publishing LLC., Treasure IslandGoogle Scholar
  3. Acharya AB, Dulebohn SC (2018b) Aphasia, Wernicke. In: StatPearls. StatPearls Publishing, LLC., Treasure IslandGoogle Scholar
  4. Anderson CA, Arciniegas DB, Hall DA, Filley CM (2013) Behabioral neuroanatomy. In: Arciniegas DB, Anderson CA, Filley CM (eds) Behavioral neurology & neuropsychiatry. Cambridge University Press, Cambridge, pp 12–31Google Scholar
  5. Bartolo A, Ham HS (2016) A cognitive overview of limb apraxia. Curr Neurol Neurosci Rep 16(8):75.  https://doi.org/10.1007/s11910-016-0675-0Google Scholar
  6. Boukrina O, Barrett AM (2017) Disruption of the ascending arousal system and cortical attention networks in post-stroke delirium and spatial neglect. Neurosci Biobehav Rev 83:1–10.  https://doi.org/10.1016/j.neubiorev.2017.09.024Google Scholar
  7. Brazis P, Masdeu JC, Biller J (2016) Localization in clinical neurology, 7th edn. Lippincott Williams & Wilkinson, PhiladelphiaGoogle Scholar
  8. Cahana-Amitay D, Albert ML (2015) Neuroscience of aphasia recovery: the concept of neural multifunctionality. Curr Neurol Neurosci Rep 15(7):41.  https://doi.org/10.1007/s11910-015-0568-7Google Scholar
  9. Caro MA, Jimenez XF (2016) Mesiotemporal disconnection and hypoactivity in Kluver-Bucy syndrome: case series and literature review. J Clin Psychiatry 77(8):e982–e988.  https://doi.org/10.4088/JCP.14r09497Google Scholar
  10. Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, OxfordGoogle Scholar
  11. Corbetta M (2014) Hemispatial neglect: clinic, pathogenesis, and treatment. Semin Neurol 34(5):514–523.  https://doi.org/10.1055/s-0034-1396005Google Scholar
  12. Crinion JT, Leff AP (2015) Using functional imaging to understand therapeutic effects in poststroke aphasia. Curr Opin Neurol 28(4):330–337.  https://doi.org/10.1097/wco.0000000000000217Google Scholar
  13. de Freitas GR (2012) Aphasia and other language disorders. Front Neurol Neurosci 30:41–45.  https://doi.org/10.1159/000333402Google Scholar
  14. Ellis C, Urban S (2016) Age and aphasia: a review of presence, type, recovery and clinical outcomes. Top Stroke Rehabil 23(6):430–439.  https://doi.org/10.1080/10749357.2016.1150412Google Scholar
  15. Enderby P (2013) Disorders of communication: dysarthria. Handb Clin Neurol 110:273–281.  https://doi.org/10.1016/b978-0-444-52901-5.00022-8Google Scholar
  16. Foundas AL (2013) Apraxia: neural mechanisms and functional recovery. Handb Clin Neurol 110:335–345.  https://doi.org/10.1016/b978-0-444-52901-5.00028-9Google Scholar
  17. Goldenberg G (2009) Apraxia and the parietal lobes. Neuropsychologia 47(6):1449–1459.  https://doi.org/10.1016/j.neuropsychologia.2008.07.014Google Scholar
  18. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, Ogar JM, Rohrer JD, Black S, Boeve BF, Manes F, Dronkers NF, Vandenberghe R, Rascovsky K, Patterson K, Miller BL, Knopman DS, Hodges JR, Mesulam MM, Grossman M (2011) Classification of primary progressive aphasia and its variants. Neurology 76(11):1006–1014.  https://doi.org/10.1212/WNL.0b013e31821103e6Google Scholar
  19. Gross RG, Grossman M (2008) Update on apraxia. Curr Neurol Neurosci Rep 8(6):490–496Google Scholar
  20. Harris JM, Jones M (2014) Pathology in primary progressive aphasia syndromes. Curr Neurol Neurosci Rep 14(8):466.  https://doi.org/10.1007/s11910-014-0466-4Google Scholar
  21. Heilman KM (2014) Possible mechanisms of anosognosia of hemiplegia. Cortex 61:30–42.  https://doi.org/10.1016/j.cortex.2014.06.007Google Scholar
  22. Heimer L (1983) The human brain and spinal cord: functional neuroanatomy and dissection guide. Springer, BerlinGoogle Scholar
  23. Hillis AE (2006) Neurobiology of unilateral spatial neglect. The Neuroscientist: a review journal bringing neurobiology. Fortschr Neurol Psychiatr 12(2):153–163.  https://doi.org/10.1177/1073858405284257Google Scholar
  24. Husain M (2008) Hemispatial neglect. Handb Clin Neurol 88:359–372.  https://doi.org/10.1016/s0072-9752(07)88018-3Google Scholar
  25. Jordan LC, Hillis AE (2006) Disorders of speech and language: aphasia, apraxia and dysarthria. Curr Opin Neurol 19(6):580–585.  https://doi.org/10.1097/WCO.0b013e3280109260Google Scholar
  26. Jung Y, Duffy JR, Josephs KA (2013) Primary progressive aphasia and apraxia of speech. Semin Neurol 33(4):342–347.  https://doi.org/10.1055/s-0033-1359317Google Scholar
  27. Karnath HO, Rorden C (2012) The anatomy of spatial neglect. Neuropsychologia 50(6):1010–1017.  https://doi.org/10.1016/j.neuropsychologia.2011.06.027Google Scholar
  28. Kertesz A, Harciarek M (2014) Primary progressive aphasia. Scand J Psychol 55(3):191–201.  https://doi.org/10.1111/sjop.12105Google Scholar
  29. Kolb B, Whishaw IQ (2015) Fundamentals of Neuropsychology.Worth Publishers, 7th editionGoogle Scholar
  30. Li K, Malhotra PA (2015) Spatial neglect. Pract Neurol 15(5):333–339.  https://doi.org/10.1136/practneurol-2015-001115Google Scholar
  31. Lippe S, Gonin-Flambois C, Jambaque I (2013) The neuropsychology of the Kluver-Bucy syndrome in children. Handb Clin Neurol 112:1285–1288.  https://doi.org/10.1016/b978-0-444-52910-7.00051-9Google Scholar
  32. Marien P, van Dun K, Verhoeven J (2015) Cerebellum and apraxia. Cerebellum (London, England) 14(1):39–42.  https://doi.org/10.1007/s12311-014-0620-1Google Scholar
  33. Milner AD, McIntosh RD (2005) The neurological basis of visual neglect. Curr Opin Neurol 18(6):748–753Google Scholar
  34. Park JE (2017) Apraxia: review and update. J Clin Neurol (Seoul, Korea) 13(4):317–324.  https://doi.org/10.3988/jcn.2017.13.4.317Google Scholar
  35. Petreska B, Adriani M, Blanke O, Billard AG (2007) Apraxia: a review. Prog Brain Res 164:61–83.  https://doi.org/10.1016/s0079-6123(07)64004-7Google Scholar
  36. Pia L, Neppi-Modona M, Ricci R, Berti A (2004) The anatomy of anosognosia for hemiplegia: a meta-analysis. Cortex 40(2):367–377Google Scholar
  37. Prigatano GP (2009) Anosognosia: clinical and ethical considerations. Curr Opin Neurol 22(6):606–611.  https://doi.org/10.1097/WCO.0b013e328332a1e7Google Scholar
  38. Ptak R, Fellrath J (2013) Spatial neglect and the neural coding of attentional priority. Neurosci Biobehav Rev 37(4):705–722.  https://doi.org/10.1016/j.neubiorev.2013.01.026Google Scholar
  39. Radanovic M, Mansur LL (2017) Aphasia in vascular lesions of the basal ganglia: a comprehensive review. Brain Lang 173:20–32.  https://doi.org/10.1016/j.bandl.2017.05.003Google Scholar
  40. Rampello L, Rampello L, Patti F, Zappia M (2016) When the word doesn’t come out: a synthetic overview of dysarthria. J Neurol Sci 369:354–360.  https://doi.org/10.1016/j.jns.2016.08.048Google Scholar
  41. Rode G, Fourtassi M, Pagliari C, Pisella L, Rossetti Y (2017) Complexity vs. unity in unilateral spatial neglect. Rev Neurol 173(7–8):440–450.  https://doi.org/10.1016/j.neurol.2017.07.010Google Scholar
  42. Rosen HJ (2011) Anosognosia in neurodegenerative disease. Neurocase 17(3):231–241.  https://doi.org/10.1080/13554794.2010.522588Google Scholar
  43. Spencer KA, Slocomb DL (2007) The neural basis of ataxic dysarthria. Cerebellum (London, England) 6(1):58–65.  https://doi.org/10.1080/14734220601145459Google Scholar
  44. Thiel A, Zumbansen A (2016) The pathophysiology of post-stroke aphasia: a network approach. Restor Neurol Neurosci 34(4):507–518.  https://doi.org/10.3233/rnn-150632Google Scholar
  45. Tippett DC (2015) Update in aphasia research. Curr Neurol Neurosci Rep 15(8):49.  https://doi.org/10.1007/s11910-015-0573-xGoogle Scholar
  46. Tippett DC, Hillis AE (2017) Where are aphasia theory and management “headed”? F1000Res 6.  https://doi.org/10.12688/f1000research.11122.1
  47. Turnbull OH, Fotopoulou A, Solms M (2014) Anosognosia as motivated unawareness: the 'defence' hypothesis revisited. Cortex 61:18–29.  https://doi.org/10.1016/j.cortex.2014.10.008Google Scholar
  48. Wilson RS, Sytsma J, Barnes LL, Boyle PA (2016) Anosognosia in dementia. Curr Neurol Neurosci Rep 16(9):77.  https://doi.org/10.1007/s11910-016-0684-zGoogle Scholar
  49. Ziegler W, Aichert I, Staiger A (2012) Apraxia of speech: concepts and controversies. J Speech Lang Hear Res 55(5):S1485–S1501.  https://doi.org/10.1044/1092-4388(2012/12-0128Google Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Serge Weis
    • 1
  • Michael Sonnberger
    • 2
  • Andreas Dunzinger
    • 3
  • Eva Voglmayr
    • 2
  • Martin Aichholzer
    • 4
  • Raimund Kleiser
    • 2
  • Peter Strasser
    • 5
  1. 1.Division of Neuropathology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  2. 2.Department of Neuroradiology, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  3. 3.Department of Neuro-Nuclear Medicine, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  4. 4.Department of Neurosurgery, Neuromed CampusKepler University Hospital, Johannes Kepler UniversityLinzAustria
  5. 5.PMU University Institute for Medical & Chemical Laboratory DiagnosticsSalzburgAustria

Personalised recommendations