Advertisement

Fluid Shock Wave Generation at Solid-Material Discontinuity Surfaces in Porous Media

  • Francesco dell’Isola
  • Pierre Seppecher
  • Angela Madeo
Part of the CISM Courses and Lectures book series (CISM, volume 535)

Abstract

A general set of boundary conditions at the interface between dissimilar fluid-filled porous matrices is established starting from an extended Hamilton-Rayleigh principle. These conditions do include inertial effects. Once linearized, they encompass boundary conditions relative to volume Darcy-Brinkman and to surface Saffman-Beavers-Joseph-Deresiewicz dissipation effects.

Keywords

Porous Medium Heat Mass Transf Singularity Surface Solid Matrix Jump Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

D Bibliography

  1. Alazmi B., Vafai K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44, 1735–1749 (2001)zbMATHCrossRefGoogle Scholar
  2. Albers B.: Monochromatic surface waves at the interface between poroelastic and fluid half-spaces. Proc. R. Soc. Lond. A 462, 701723 (2006)MathSciNetGoogle Scholar
  3. Allaire G.: Homogenization of the Stokes flow in a connected porous medium. Asymptotic Anal. 2,3, 203–222 (1989).MathSciNetzbMATHGoogle Scholar
  4. Allaire G.: Homoge ne isation des e quations de Stokes dans un domaine perfore de petits trous re partis pe riodiquement. C. R. Acad. Sci. Paris, Ser. I, 309,11, 741–746 (1989).MathSciNetzbMATHGoogle Scholar
  5. Allaire G.: Homogenization of the Navier-Stokes equations in open sets perforated with tiny holes. Arch. Rational Mech. Anal., 113, 209298 (1991).Google Scholar
  6. Allaire G.: Homogenization of the Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math., XLIV, 605–641 (1991).MathSciNetCrossRefGoogle Scholar
  7. Allaire, G.: Continuity of the Darcys law in the low-volume fraction limit. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18, 475–499 (1991)MathSciNetzbMATHGoogle Scholar
  8. Altay G., Dokmeci M.C.: On the equations governing the motion of an anisotropic poroelastic material. Proc. R. Soc. A 462, 2373–2396 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. Baek S., Srinivasa A.R.: Diffusion of a fluid through an elastic solid undergoing large deformation. Int. J. Non-Linear Mech. 39, 201–218 (2004)zbMATHCrossRefGoogle Scholar
  10. Batra G., Bedford A., Drumheller D.S.: Applications of Hamiltons principle to continua with singular surfaces. Arch. Rational Mech. Anal. 93, 223251 (1986)MathSciNetCrossRefGoogle Scholar
  11. Bedford A., Drumheller D.S.: A variational theory of immiscible mixtures. Arch. Rational Mech. Anal. 68, 37–51 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  12. Bedford A., Drumheller D.S.: A variational theory of porous media. Int. J. Solids Struct. 15, 967–980 (1979) 20 CISM Course C-1006 Udine, July 12–16 2010MathSciNetzbMATHCrossRefGoogle Scholar
  13. Bedford A., Drumheller D.S.: Recent advances: theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21, 863–960 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  14. Biot M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)zbMATHCrossRefGoogle Scholar
  15. Biot M.A.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 23, 91–96 (1956)MathSciNetzbMATHGoogle Scholar
  16. Biot M.A.: Theory of propagation of elastic waves in fluid-saturated porous solid. J. Acoust. Soc. Am. 28, 168–191 (1956)MathSciNetCrossRefGoogle Scholar
  17. Biot M.A., Willis D G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24 594–601 (1957)MathSciNetGoogle Scholar
  18. Biot M.A.: Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys. 33, 1482–1498 (1962)MathSciNetzbMATHCrossRefGoogle Scholar
  19. Biot M.A.: Variational principles for acoustic gravity waves. Phys. Fluids 6, 772–778 (1963)MathSciNetCrossRefGoogle Scholar
  20. Beavers G.S., Joseph D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)CrossRefGoogle Scholar
  21. Burridge R., Keller J.B.: Poroelasticity equations derived from microstructure. J. Acoust. Soc. Am. 70:4, 1140–1146 (1981)zbMATHCrossRefGoogle Scholar
  22. Casertano L., Oliveri del Castillo A., Quagliariello M.T.: Hydrodynamics and geodynamics in Campi Flegrei Area of Italy. Nature 264, 161–164 (1976)CrossRefGoogle Scholar
  23. Caviglia G., Morro A.:Harmonic waves in thermo-visco-elastic solids.Int. J. Eng. Sci.43, 1323–1336 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  24. Chandesris M., Jamet D.: Boundary conditions at a planar fluidporous interface for a Poiseuille flow. Int. J. Heat and Mass Transf. 49, 2137–2150 (2006).zbMATHCrossRefGoogle Scholar
  25. Chandesris M., Jamet D.: Boundary conditions at a fluidporous interface: an a priori estimation of the stress jump coefficients. Int. J. Heat and Mass Transf. 50, 3422–3436 (2007)zbMATHCrossRefGoogle Scholar
  26. Chateau X., Dormieux L.: Homoge ne isation dun milieu poreux non sature: Lemme de Hill et applications. C.R. Acad. Sci. Paris 320, Serie IIb, 627–634 (1995)Google Scholar
  27. Chateau X., Dormieux L.: Approche microme canique du comportement dun milieu poreux non sature. C. R. Acad. Sci. Paris 326, Serie II, 533–538 (1998)Google Scholar
  28. Cieszko M., Kubik J.: Interaction of elastic waves with a fluid-saturated porous solid boundary. J. of Theor. Appl. Mech. 36, 561580 (1998)Google Scholar
  29. Cieszko M. Kubik J.: Derivation of matching conditions at the contact surface between fluid-saturated porous solid and bulk fluid. Transp. Porous Med. 34, 319336 (1999)CrossRefGoogle Scholar
  30. Coussy O., Bourbie T.: Propagation des ondes acoustiques dans les milieux poreux sature s. Rev. Inst. Fr. Pet. 39, 47–66 (1984)Google Scholar
  31. Coussy O. Dormieux L. Detournay E.: From mixture theory to Biots approach for porous media. Int. J. Solids Struct. 35, 46194635 (1998)CrossRefGoogle Scholar
  32. Coussy O.: Poromechanics, John Wiley Sons, Chichester (2004)Google Scholar
  33. Cowin SC: Bone Mechanics Handbook, Boca Raton, FL: CRC Press (2001)Google Scholar
  34. Debergue P. et al.: Boundary conditions for the weak formulation of the mixed (u,p) poroelasticity problem. J. Acoust. Soc. Am. 106: 5, 2383–2390 (1999)CrossRefGoogle Scholar
  35. de Boer R.: Highlights in the historical development of the porous media theory: toward a consistent macroscopic theory. Appl. Mech. Rev. 49: 4, 201–262 (1996)CrossRefGoogle Scholar
  36. de Boer R.: Contemporary progress in porous media theory. Appl. Mech. Rev. 53, 323370 (2000)Google Scholar
  37. de Boer R.: Theoretical poroelasticity a new approach. Chaos Solitons Fractals 25, 861–878 (2005)zbMATHCrossRefGoogle Scholar
  38. de Buhan P., Dormieux L., Chateau X.: A micro-macro approach to the constitutive formulation of large strain poroelasticity. Poromechanics a tribute to Maurice A. Biot. Thimus et al., Rotterdam (1998) 21 CISM Course C-1006 Udine, July 12–16 2010Google Scholar
  39. de Buhan P., Chateau X., Dormieux L.: The constitutive equations of finite strain poroelasticity in the light of a micro-macro approach. Eur. J. Mech. A/Solids. 17, 909–921 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  40. Cryer C.W.: A comparison of the three dimensional consolidation theories of Biot and Terzaghi. Q. J. Mech. Appl. Math. 16: 4, 401–412 (1963)zbMATHCrossRefGoogle Scholar
  41. de la Cruz V., Hube J., Spanos T.J.T.: Reflection and transmission of seismic waves at the boundaries of porous media. Wave Motion 16, 323–338 (1992)CrossRefGoogle Scholar
  42. dellIsola F., Rosa L., Wozniak C.: A micro-structured continuum modelling compacting fluid-saturated grounds: the effects of pore-size scale parameter. Acta Mech. 127, 1:4, 165–182 (1998)MathSciNetCrossRefGoogle Scholar
  43. dellIsola, F., Guarascio, M., Hutter, K.: A variational approach for the deformation of a saturated porous solid. A second gradient theory extending Terzaghis effective stress principle. Arch. Appl. Mech. 70, 323–337 (2000).CrossRefGoogle Scholar
  44. dellIsola, F., Sciarra, G., Batra, R.C.: Static Deformations of a Linear Elastic Porous Body filled with an Inviscid Fluid. J. Elasticity 72, 99–120 (2003).MathSciNetCrossRefGoogle Scholar
  45. Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: I. Reflection of plane waves at a free plane boundary (non-dissipative case). Bull. Seismol. Soc. Am. 50, 599607 (1960)MathSciNetGoogle Scholar
  46. Deresiewicz H.: The effect of boundaries on wave propagation in a liquid-filled porous solid: III. Reflec-tion of plane waves at a free plane boundary (general case) Bull. Seismol. Soc. Am. 52, 595625 (1962)Google Scholar
  47. Deresiewicz H.: A note on Love waves in a homogeneous crust overlying an inhomogeneous substratum. Bull. Seismol. Soc. Am. 52, 639–645 (1962)Google Scholar
  48. Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: IV. surface in a half-space. Bull. Seismol. Soc. Am. 50, 627–638 (1962)MathSciNetGoogle Scholar
  49. Deresiewicz H.: On uniqueness in dynamic poroelasticity. Bull. Seismol. Soc. Am. 53, 783–788 (1963)Google Scholar
  50. Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: V. Trans-mission across a plane interface. Bull. Seismol. Soc. Am. 54, 409–416 (1964)Google Scholar
  51. Deresiewicz H.: The effect of boundaries on wave propagation in a liquidfilled porous solid: VII. Surface waves in a half-space in the presence of a liquid layer. Bull. Seismol. Soc. Am. 54, 425430 (1964)Google Scholar
  52. Dormieux L., Coussy O., de Buhan P.: Mode lisation me canique dun milieu polyphasique par la me thode des puissances virtuelles. C.R. Acad. Sci. Paris. 313, Serie IIb, 863–868 (1991)zbMATHGoogle Scholar
  53. Dormieux L., Stolz C.: Approche variationelle en poroe lasticite. C.R. Acad. Sci. Paris, 315, Serie IIb, 407–412 (1992)zbMATHGoogle Scholar
  54. Dormieux L., Kondo D. and Ulm F.-J. Microporomechanics Wiley (2006).Google Scholar
  55. Fillunger P.: Erbdaumechanik. Selbst Verlag des Verfassers, Wien (1936).Google Scholar
  56. Gavrilyuk S.L., Gouin H., Perepechko Yu.V.: A variational principle for two-fluid models. C.R. Acad. Sci. Paris, 324, Serie IIb, 483–490 (1997)zbMATHGoogle Scholar
  57. Gavrilyuk S.L., Gouin H., Perepechko Yu.V.: Hyperbolic Models of Homogeneous Two-Fluid Mixtures, Meccanica 33, 161–175(1998)MathSciNetzbMATHCrossRefGoogle Scholar
  58. Gavrilyuk S., Perepechko Yu. V.: Variational approach to constructing hyperbolic models of two-velocity media. J. Appl. Mech. Technical Phys. 39:5, 684–698 (1998)MathSciNetCrossRefGoogle Scholar
  59. Gavrilyuk S.L., Gouin H.: A new form of governing equations of fluids arising from Hamiltons principle. Int. J. Eng. Sci. 37, 1495–1520 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  60. Gavrilyuk S., Saurel R.: Rankine-Hugoniot relations for shocks in heterogeneous mixtures J. Fluid Mech. 575, 495–507 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  61. Germain P.: Cours de me canique des milieux continus tome 1 the orie ge ne rale, Masson (1973)Google Scholar
  62. Gouin H.: Variational theory of mixtures in continuum mechanics. Eur. J. Mech., B/Fluids 9, 469–491 (1990)MathSciNetzbMATHGoogle Scholar
  63. Gouin H., Gavrilyuk S.L.: Hamiltons principle and Rankine-Hugoniot conditions for general motions of mixtures. Meccanica 34, 39–47 (1998) 22 CISM Course C-1006 Udine, July 12–16 2010 Goyeau B. et al.: Momentum transport at a fluidporous interface. Int. J. Heat Mass Transf. 46, 4071–4081 (2003)MathSciNetCrossRefGoogle Scholar
  64. Haber S., Mauri R.: Boundary conditions for Darcys flow through porous media. Int. J. Multiphase Flow 9, 561574 (1983)CrossRefGoogle Scholar
  65. Hassanizadeh S. M. Gray W.: Boundary and interface conditions in porous media. Water Resources Res. 25, 17051715 (1989)Google Scholar
  66. Hornung U.: Homogenization and Porous Media. Interdiscip. Appl. Math., vol. 6, Springer, Berlin (1997)zbMATHCrossRefGoogle Scholar
  67. Houlsbya G.T., Puzrin A.M.: Rate-dependent plasticity models derived from potential functions. J. Rheol. 46(1), 113–126 (2002)CrossRefGoogle Scholar
  68. Jager W., Mikelic A.: On the interface boundary condition of Beavers, Joseph, and Saffman. SIAM J. Appl. Math. 60, 1111–1127 (2000)MathSciNetCrossRefGoogle Scholar
  69. Kaasschieter E.F., Frijns A.J.H.: Squeezing a sponge: a three-dimensional solution in poroelasticity Computational Geosciences 7: 49–59, (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  70. Kosin ski W.: Field Singularities and Wave Analysis in Continuum Mechanics. PWN-Polish Scientific Publishers, Warszawa (1986)zbMATHGoogle Scholar
  71. Kubik J., Cieszko M.: Analysis of matching conditions at the boundary surface of a fluid-saturated porous solid and a bulk fluid: the use of Lagrange multipliers. Continuum Mech. Thermodyn. 17:4, 351–359 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  72. Kuznetsov A.V.: Influence of the stress jump condition at the porous medium/clear fluid interface on a flow at porous wall. Int. Comm. Heat Mass Transf. 24, 401–410. (1997)CrossRefGoogle Scholar
  73. Le Bars M., Grae Worster M.: Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification. J. Fluid Mech. 550, 149–173 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  74. Lee C.K.: Flow and deformation in poroelastic media with moderate load and weak inertia. Proc. R. Soc. Lond. A 460, 20512087 (2004)Google Scholar
  75. Levy T., Sanchez-Palencia E.: On boundary conditions for fluid flow in porous media Int. J. Eng. Sci. 13, 923–940 (1975)MathSciNetzbMATHCrossRefGoogle Scholar
  76. Madeo A., dellIsola F., Ianiro N., Sciarra G.: A variational deduction of second gradient poroelasticity II: an application to the Consolidation Problem. J. Mech. Mater. Struct. 3:4, 607–625 (2008)CrossRefGoogle Scholar
  77. Mandel J.: Consolidation des sols (e tude mathe matique). Geotechnique 3, 287–299 (1953)CrossRefGoogle Scholar
  78. Marle C.M.: On macroscopic equations governing multiphase flow with diffusion and chemical reactions in porous media. Int. J. Eng. Sci. 20:5, 643662 (1982)MathSciNetCrossRefGoogle Scholar
  79. Mobbs S.D.: Variational principles for perfect and dissipative fluid flows. Proc. R. Soc. Lond. A 381, 457468 (1982)Google Scholar
  80. Neale G., Nader W.: Practical significance of Brinkmans extension of Darcys law: coupled parallel flows within a channel and a bounding porous medium. Can. J. Chem. Eng. 52, 475–478 (1974)CrossRefGoogle Scholar
  81. Ochoa-Tapia J.A., Whitaker S.: Momentum transfer at the boundary between a porous; medium and a homogeneous fluid I. Theoretical development. Int. J. Heat Mass Transf. 38, 2635–2646 (1995)zbMATHCrossRefGoogle Scholar
  82. Ochoa-Tapia J. A., Whitaker S.: Momentum transfer at the boundary between a porous medium and a homogeneous fluid II. Comparison with experiment. Int. J. Heat Mass Transf. 38, 2647–2655 (1995).CrossRefGoogle Scholar
  83. Ochoa-Tapia J.A., Whitaker S.: Momentum jump condition at the boundary between a porous medium and a homogeneous fluid: inertial effects. J. Porous Media 1, 201–217 (1998).zbMATHGoogle Scholar
  84. Orsi G., Petrazzuoli S.M., Wohletz K.: Mechanical and thermo-fluid behaviour during unrest at the Campi Flegrei caldera (Italy) J. Vulcanol. Geotherm. Res. 91, 453–470 (1999)CrossRefGoogle Scholar
  85. Pan Y., Horne R.N.: Generalized Macroscopic Models for Fluid Flow in Deformable Porous Media. Theories Transport in Porous Media 45: 1–27, 2001.MathSciNetCrossRefGoogle Scholar
  86. Prat M.: On the boundary conditions at the macroscopic level’ Transp. Porous Med. 4, 259–280 (1988) 23 CISM Course C-1006 Udine, July 12–16 2010Google Scholar
  87. Poulikakos D., Kazmierczak M.: Forced convection in a duct partially filled with a porous material. J. Heat Transf. 109, 653–662 (1987)CrossRefGoogle Scholar
  88. Quiroga-Goode G., Carcione J.M.: Heterogeneous modelling behaviour at an interface in porous media. Comput. Geosciences 1, 109125 (1997)MathSciNetGoogle Scholar
  89. Rajagopal K.R. et al.: On boundary conditions for a certain class of problems in mixture theory. Int. J. Eng. Sci. 24, 14531463 (1986)MathSciNetCrossRefGoogle Scholar
  90. Rajagopal K.R., Tao L.: Mechanics of mixtures. Ser. Adva. Math. Appl. Sci. Vol. 35 (1995)Google Scholar
  91. Rasolofosaon N.J.P., Coussy O.: Propagation des ondes acoustiques dans les milieux poreux sature s: effets dinterface I. Rev. Inst. Fr. Pet. 40, 581–594 (1985)Google Scholar
  92. Rasolofosaon N.J.P., Coussy O.: Propagation des ondes acoustiques dans les milieux poreux sature s: effets dinterface II. Rev. Inst. Fr. Pet. 40, 785802 (1985)Google Scholar
  93. Rasolofosaon N.J.P., Coussy O.: Propagation des ondes acoustiques dans les milieux poreux sature s: effets dinterface III. Rev. Inst. Fr. Pet. 41, 91103 (1986)Google Scholar
  94. Saffman P. G.: On the boundary conditions at the surface of a porous medium. Stud. Appl. Math. L, 93–101 (1971)Google Scholar
  95. Sciarra G., dellIsola F., Ianiro N., Madeo A.: A variational deduction of second gradient poroelasticity I: general theory. J. Mech. Mater. Struct. 3:3, 507–526 (2008)CrossRefGoogle Scholar
  96. Seliger R.L., Whitham G.B.: Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305, 1–25 (1968)zbMATHCrossRefGoogle Scholar
  97. Sharma M.D.: Wave propagation across the boundary between two dissimilar poroelastic solids. J. Sound Vib. 314, 657–671 (2008)CrossRefGoogle Scholar
  98. Sonnet A.M., Maffettone P.L. and Virga E.G.: Continuum theory for nematic liquid crystals with tensorial order. J. Non-Newtonian Fluid Mech. 119 51–59 (2004)zbMATHCrossRefGoogle Scholar
  99. V. Terzaghi K.: Theoretical soil mechanics. John Wiley Sons, Chichester (1943)CrossRefGoogle Scholar
  100. Savare G., Tomarelli F.: Superposition and chain rule for bounded Hessian functions. Adv. Math. 140, 237–281 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  101. Vafai K., Thiyagaraja R.: Analysis of flow and heat transfer at the interface region of a porous medium. Int. J. Heat Mass Transf. 30, 1391–1405 (1987)zbMATHCrossRefGoogle Scholar
  102. Vafai K., Kim S.J.: Analysis of surface enhancement by a porous substrate. J. Heat Transf. 112, 700–706 (1990)CrossRefGoogle Scholar
  103. Valde s-Paradaa F.J., Goyeaub B., Ochoa-Tapiaa J.A.: Diffusive mass transfer between a microporous medium and a homogeneous fluid: Jump boundary conditions. Chem. Eng. Sci. 61 1692–1704 (2006)CrossRefGoogle Scholar
  104. Wilmanski K.: Waves in porous and granular materials. In: Kinetic and Continuum Theories of Granular and Porous Media, 131–185, K. Hutter and K. Wilmanski (eds.), Springer Wien New York (1999)Google Scholar
  105. Wilmanski K.: A few remarks on Biots model and linear acoustics of poroelastic saturated materials. Soil Dyn. Earthq. Eng. 26, 509–536 (2006)CrossRefGoogle Scholar
  106. Yang J.: Importance of flow condition on seismic waves at a saturated porous solid boundary. J. Sound Vib. 221:3, 391413 (1999)CrossRefGoogle Scholar

Copyright information

© CISM, Udine 2011

Authors and Affiliations

  • Francesco dell’Isola
    • 1
    • 2
    • 5
  • Pierre Seppecher
    • 3
    • 5
  • Angela Madeo
    • 4
    • 5
  1. 1.Dip. DISGUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Laboratorio di Strutture e Materiali IntelligentiFondazione Tullio Levi-CivitaCisterna di LatinaItaly
  3. 3.Inst. de MathematiqueUniversité de ToulonLa Garde CedexFrance
  4. 4.Laboratoire de Génie Civil et Ingénierie EnvironnementaleUniversité de Lyon-INSAVilleurbanne CedexFrance
  5. 5.International Research Centre on “Mathematics & Mechanics of Complex Systems” M& MOCSItaly

Personalised recommendations